Johansson Niklas, Larsson Jan-Åke
Institutionen för Systemteknik, Linköpings Universitet, 581 83 Linköping, Sweden.
Entropy (Basel). 2019 Aug 15;21(8):800. doi: 10.3390/e21080800.
Query complexity is a common tool for comparing quantum and classical computation, and it has produced many examples of how quantum algorithms differ from classical ones. Here we investigate in detail the role that oracles play for the advantage of quantum algorithms. We do so by using a simulation framework, Quantum Simulation Logic (QSL), to construct oracles and algorithms that solve some problems with the same success probability and number of queries as the quantum algorithms. The framework can be simulated using only classical resources at a constant overhead as compared to the quantum resources used in quantum computation. Our results clarify the assumptions made and the conditions needed when using quantum oracles. Using the same assumptions on oracles within the simulation framework we show that for some specific algorithms, such as the Deutsch-Jozsa and Simon's algorithms, there simply is no advantage in terms of query complexity. This does not detract from the fact that quantum query complexity provides examples of how a quantum computer can be expected to behave, which in turn has proved useful for finding new quantum algorithms outside of the oracle paradigm, where the most prominent example is Shor's algorithm for integer factorization.
查询复杂度是比较量子计算和经典计算的常用工具,它给出了许多量子算法与经典算法不同之处的示例。在此,我们详细研究预言机对量子算法优势所起的作用。我们通过使用一个模拟框架——量子模拟逻辑(QSL)来构建预言机和算法,这些预言机和算法能以与量子算法相同的成功概率和查询次数解决一些问题。与量子计算中使用的量子资源相比,该框架仅使用经典资源就能以恒定开销进行模拟。我们的结果阐明了使用量子预言机时所做的假设和所需的条件。在模拟框架内对预言机使用相同假设,我们表明对于一些特定算法,如德伊奇 - 约扎算法和西蒙算法,在查询复杂度方面根本没有优势。这并不影响量子查询复杂度能提供量子计算机预期行为示例这一事实,而这反过来已被证明有助于在预言机范式之外寻找新的量子算法,其中最突出的例子就是用于整数分解的肖尔算法。