Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands.
Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland; Science Foundation Ireland, Centre for Research in Medical Device, National University of Ireland Galway, Galway, Ireland.
Acta Biomater. 2019 Jan 1;83:277-290. doi: 10.1016/j.actbio.2018.10.041. Epub 2018 Oct 28.
Tenocytes, the main cell type of the tendon, require mechanical stimuli for their proper function. When the tenocyte environment changes due to tissue damage or by transferring tenocytes from their native environment into cell culture, the signals from the tenocyte niche are lost, leading towards a decline of phenotypic markers. It is known that micro-topographies can influence cell fate by the physical cues they provide. To identify the optimal topography-induced biomechanical niche in vitro, we seeded tenocytes on the TopoChip, a micro-topographical screening platform, and measured expression of the tendon transcription factor Scleraxis. Through machine learning algorithms, we associated elevated Scleraxis levels with topological design parameters. Fabricating micro-topographies with optimal surface characteristics on larger surfaces allowed finding an improved expression of multiple tenogenic markers. However, long-term confluent culture conditions coincided with osteogenic marker expression and the loss of morphological characteristics. In contrast, passaging tenocytes which migrated from the tendon directly on the topography resulted in prolonged elongated morphology and elevated Scleraxis levels. This research provides new insights into how micro-topographies influence tenocyte cell fate, and supports the notion that micro-topographical design can be implemented in a new generation of tissue culture platforms for supporting the phenotype of tenocytes. STATEMENT OF SIGNIFICANCE: The challenge in controlling in vitro cell behavior lies in controlling the complex culture environment. Here, we present for the first time the use of micro-topographies as a biomechanical niche to support the phenotype of tenocytes. For this, we applied the TopoChip platform, a screening tool with 2176 unique micro-topographies for identifying feature characteristics associated with elevated Scleraxis expression, a tendon related marker. Large area fabrication of micro-topographies with favorable characteristics allowed us to find a beneficial influence on other tenogenic markers as well. Furthermore, passaging cells is more beneficial for Scleraxis marker expression and tenocyte morphology compared to confluent conditions. This study presents important insights for the understanding of tenocyte behavior in vitro, a necessary step towards tendon engineering.
肌腱的主要细胞类型是肌腱细胞,它们需要机械刺激才能正常发挥功能。当肌腱细胞的环境因组织损伤或从天然环境中转到细胞培养而改变时,肌腱细胞龛位的信号就会丢失,导致表型标志物的下降。已知微形貌可以通过提供物理线索来影响细胞命运。为了在体外确定最佳的拓扑诱导生物力学龛位,我们将肌腱细胞接种在 TopoChip 上,这是一个微形貌筛选平台,并测量了肌腱转录因子 Scleraxis 的表达。通过机器学习算法,我们将升高的 Scleraxis 水平与拓扑设计参数相关联。在更大的表面上制造具有最佳表面特征的微形貌,可以找到多种肌腱标志物表达的改善。然而,长期的汇合培养条件与成骨标志物的表达和形态特征的丧失相吻合。相比之下,直接在形貌上迁移的肌腱细胞的传代培养导致了更长的伸长形态和升高的 Scleraxis 水平。这项研究提供了关于微形貌如何影响肌腱细胞命运的新见解,并支持这样的观点,即微形貌设计可以在新一代组织培养平台中实施,以支持肌腱细胞的表型。
意义陈述:控制体外细胞行为的挑战在于控制复杂的培养环境。在这里,我们首次提出将微形貌用作生物力学龛位来支持肌腱细胞的表型。为此,我们应用了 TopoChip 平台,这是一种具有 2176 种独特微形貌的筛选工具,用于识别与升高的 Scleraxis 表达相关的特征特征,Scleraxis 是一种与肌腱相关的标志物。具有有利特征的大面积制造微形貌允许我们发现对其他肌腱标志物也有有益的影响。此外,与汇合条件相比,传代细胞对 Scleraxis 标志物表达和肌腱细胞形态更有益。这项研究为理解肌腱细胞的体外行为提供了重要的见解,这是肌腱工程的必要步骤。
Acta Biomater. 2018-10-28
Tissue Eng Part A. 2021-8
BMC Cell Biol. 2018-8-7
J Steroid Biochem Mol Biol. 2015-8
Nano Lett. 2024-6-4
Adv Healthc Mater. 2024-3
Int J Mol Med. 2023-8
Adv Healthc Mater. 2023-7
Biomater Biosyst. 2021-1-30
Adv Sci (Weinh). 2022-11-22
Front Cell Dev Biol. 2022-6-3