Suppr超能文献

确定下肢关节置换术的高费用病例。

Identifying high-cost episodes in lower extremity joint replacement.

机构信息

Robert D. and Patricia E. Kern Mayo Clinic Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota.

Mayo Clinic College of Science and Medicine, Rochester, Minnesota.

出版信息

Health Serv Res. 2019 Feb;54(1):117-127. doi: 10.1111/1475-6773.13078. Epub 2018 Nov 5.

Abstract

OBJECTIVES

To evaluate the ability of claims-based risk adjustment and incremental components of clinical data to identify 90-day episode costs among lower extremity joint replacement (LEJR) patients according to the Centers for Medicare & Medicaid Services (CMS) Comprehensive Care for Joint Replacement (CJR) program provisions.

DATA SOURCES

Medicare fee-for-service (FFS) data for qualifying CJR episodes in the United States, and FFS data linked with clinical data from CJR-qualifying LEJR episodes performed at High Value Healthcare Collaborative (HVHC) and Mayo Clinic in 2013. HVHC and Mayo Clinic populations are subsets of the total FFS population to assess the additive value of additional pieces of clinical data in correctly assigning patients to cost groups.

STUDY DESIGN

Multivariable logistic models identified high-cost episodes.

DATA COLLECTION/EXTRACTION METHODS: Clinical data from participating health care systems merged with Medicare FFS data.

PRINCIPAL FINDINGS

Our three populations consisted of 363 621 patients in the CMS population, 4881 in the HVHC population, and 918 in the Mayo population. When modeling per CJR specifications, we observed low to moderate model performance (CMS C-Stat = 0.714; HVHC C-Stat = 0.628; Mayo C-Stat = 0.587). Adding CMS-HCC categories improved identification of patients in the top 20% of episode costs (CMS C-Stat = 0.758, HVHC C-Stat = 0.692, Mayo C-Stat = 0.677). Clinical variables, particularly functional status in the population for which this was available (Mayo C-Stat = 0.783), improved ability to identify patients within cost groups.

CONCLUSIONS

Policy makers could use these findings to improve payment adjustments for bundled LEJR procedures and in consideration of new data elements for reimbursement.

摘要

目的

根据医疗保险和医疗补助服务中心(CMS)的综合关节置换护理(CJR)计划条款,评估基于索赔的风险调整和临床数据增量部分在确定下肢关节置换(LEJR)患者 90 天发病成本方面的能力。

数据来源

美国符合 CJR 条件的合格病例的医疗保险按服务收费(FFS)数据,以及 2013 年在高价值医疗保健合作组织(HVHC)和梅奥诊所进行的符合 CJR 条件的 LEJR 病例的 FFS 数据与临床数据相链接。HVHC 和 Mayo 诊所人群是 FFS 总人群的子集,用于评估额外临床数据在正确分配患者到成本组方面的附加价值。

研究设计

多变量逻辑模型确定了高成本病例。

数据收集/提取方法:来自参与医疗保健系统的临床数据与医疗保险 FFS 数据合并。

主要发现

我们的三个人群包括 CMS 人群中的 363621 名患者、HVHC 人群中的 4881 名患者和 Mayo 人群中的 918 名患者。按照 CJR 规范建模时,我们观察到模型性能较低到中等(CMS C-Stat=0.714;HVHC C-Stat=0.628;Mayo C-Stat=0.587)。添加 CMS-HCC 类别可提高对发病成本前 20%患者的识别能力(CMS C-Stat=0.758,HVHC C-Stat=0.692,Mayo C-Stat=0.677)。临床变量,特别是在可获得该变量的人群中的功能状态(Mayo C-Stat=0.783),提高了在成本组内识别患者的能力。

结论

政策制定者可以利用这些发现来改进捆绑式 LEJR 手术的支付调整,并考虑新的报销数据元素。

相似文献

1
Identifying high-cost episodes in lower extremity joint replacement.
Health Serv Res. 2019 Feb;54(1):117-127. doi: 10.1111/1475-6773.13078. Epub 2018 Nov 5.
4
Association between mandatory bundled payments and changes in socioeconomic disparities for joint replacement outcomes.
Health Serv Res. 2024 Oct;59(5):e14369. doi: 10.1111/1475-6773.14369. Epub 2024 Aug 11.
5
The High Value Healthcare Collaborative: Observational Analyses of Care Episodes for Hip and Knee Arthroplasty Surgery.
J Arthroplasty. 2017 Mar;32(3):702-708. doi: 10.1016/j.arth.2016.09.009. Epub 2016 Sep 28.
7
Patient selection in the Comprehensive Care for Joint Replacement model.
Health Serv Res. 2022 Feb;57(1):72-90. doi: 10.1111/1475-6773.13880. Epub 2021 Oct 6.
8
Two-Year Evaluation of Mandatory Bundled Payments for Joint Replacement.
N Engl J Med. 2019 Jan 17;380(3):252-262. doi: 10.1056/NEJMsa1809010. Epub 2019 Jan 2.
9
Spillover effects of mandatory hip and knee replacement surgery bundles in medicare.
Healthc (Amst). 2020 Dec;8(4):100447. doi: 10.1016/j.hjdsi.2020.100447. Epub 2020 Oct 28.

引用本文的文献

本文引用的文献

2
Modeling the Potential Economic Impact of the Medicare Comprehensive Care for Joint Replacement Episode-Based Payment Model.
J Arthroplasty. 2017 Nov;32(11):3268-3273.e4. doi: 10.1016/j.arth.2017.05.054. Epub 2017 Jun 8.
3
Cost of Joint Replacement Using Bundled Payment Models.
JAMA Intern Med. 2017 Feb 1;177(2):214-222. doi: 10.1001/jamainternmed.2016.8263.
4
Medicare's New Bundled Payment For Joint Replacement May Penalize Hospitals That Treat Medically Complex Patients.
Health Aff (Millwood). 2016 Sep 1;35(9):1651-7. doi: 10.1377/hlthaff.2016.0263.
5
Changes in Discharge Location and Readmission Rates Under Medicare Bundled Payment.
JAMA Intern Med. 2016 Jan;176(1):115-7. doi: 10.1001/jamainternmed.2015.6265.
7
The Effect of Advancing Age on Total Joint Replacement Outcomes.
Geriatr Orthop Surg Rehabil. 2015 Sep;6(3):173-9. doi: 10.1177/2151458515583515.
8
Patient Factors and Cost Associated with 90-Day Readmission Following Total Hip Arthroplasty.
J Arthroplasty. 2016 Jan;31(1):49-52. doi: 10.1016/j.arth.2015.07.030. Epub 2015 Jul 21.
9
Bundled Payments for Elective Primary Total Knee Arthroplasty: An Analysis of Medicare Administrative Data.
Geriatr Orthop Surg Rehabil. 2015 Mar;6(1):3-10. doi: 10.1177/2151458514559832.
10
What Drives Variation in Episode-of-care Payments for Primary TKA? An Analysis of Medicare Administrative Data.
Clin Orthop Relat Res. 2015 Nov;473(11):3337-47. doi: 10.1007/s11999-015-4445-0. Epub 2015 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验