Robert D. and Patricia E. Kern Mayo Clinic Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, Minnesota.
Mayo Clinic College of Science and Medicine, Rochester, Minnesota.
Health Serv Res. 2019 Feb;54(1):117-127. doi: 10.1111/1475-6773.13078. Epub 2018 Nov 5.
To evaluate the ability of claims-based risk adjustment and incremental components of clinical data to identify 90-day episode costs among lower extremity joint replacement (LEJR) patients according to the Centers for Medicare & Medicaid Services (CMS) Comprehensive Care for Joint Replacement (CJR) program provisions.
Medicare fee-for-service (FFS) data for qualifying CJR episodes in the United States, and FFS data linked with clinical data from CJR-qualifying LEJR episodes performed at High Value Healthcare Collaborative (HVHC) and Mayo Clinic in 2013. HVHC and Mayo Clinic populations are subsets of the total FFS population to assess the additive value of additional pieces of clinical data in correctly assigning patients to cost groups.
Multivariable logistic models identified high-cost episodes.
DATA COLLECTION/EXTRACTION METHODS: Clinical data from participating health care systems merged with Medicare FFS data.
Our three populations consisted of 363 621 patients in the CMS population, 4881 in the HVHC population, and 918 in the Mayo population. When modeling per CJR specifications, we observed low to moderate model performance (CMS C-Stat = 0.714; HVHC C-Stat = 0.628; Mayo C-Stat = 0.587). Adding CMS-HCC categories improved identification of patients in the top 20% of episode costs (CMS C-Stat = 0.758, HVHC C-Stat = 0.692, Mayo C-Stat = 0.677). Clinical variables, particularly functional status in the population for which this was available (Mayo C-Stat = 0.783), improved ability to identify patients within cost groups.
Policy makers could use these findings to improve payment adjustments for bundled LEJR procedures and in consideration of new data elements for reimbursement.
根据医疗保险和医疗补助服务中心(CMS)的综合关节置换护理(CJR)计划条款,评估基于索赔的风险调整和临床数据增量部分在确定下肢关节置换(LEJR)患者 90 天发病成本方面的能力。
美国符合 CJR 条件的合格病例的医疗保险按服务收费(FFS)数据,以及 2013 年在高价值医疗保健合作组织(HVHC)和梅奥诊所进行的符合 CJR 条件的 LEJR 病例的 FFS 数据与临床数据相链接。HVHC 和 Mayo 诊所人群是 FFS 总人群的子集,用于评估额外临床数据在正确分配患者到成本组方面的附加价值。
多变量逻辑模型确定了高成本病例。
数据收集/提取方法:来自参与医疗保健系统的临床数据与医疗保险 FFS 数据合并。
我们的三个人群包括 CMS 人群中的 363621 名患者、HVHC 人群中的 4881 名患者和 Mayo 人群中的 918 名患者。按照 CJR 规范建模时,我们观察到模型性能较低到中等(CMS C-Stat=0.714;HVHC C-Stat=0.628;Mayo C-Stat=0.587)。添加 CMS-HCC 类别可提高对发病成本前 20%患者的识别能力(CMS C-Stat=0.758,HVHC C-Stat=0.692,Mayo C-Stat=0.677)。临床变量,特别是在可获得该变量的人群中的功能状态(Mayo C-Stat=0.783),提高了在成本组内识别患者的能力。
政策制定者可以利用这些发现来改进捆绑式 LEJR 手术的支付调整,并考虑新的报销数据元素。