Suppr超能文献

电子病历中实验室检验命名规范在医院内和医院间的差异:一项全国性纵向研究。

Variation in Laboratory Test Naming Conventions in EHRs Within and Between Hospitals: A Nationwide Longitudinal Study.

机构信息

Veterans Affairs Center for Clinical Management Research.

Department of Internal Medicine and Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI.

出版信息

Med Care. 2019 Apr;57(4):e22-e27. doi: 10.1097/MLR.0000000000000996.

Abstract

BACKGROUND

Electronic health records provide clinically rich data for research and quality improvement work. However, the data are often unstructured text, may be inconsistently recorded and extracted into centralized databases, making them difficult to use for research.

OBJECTIVES

We sought to quantify the variation in how key laboratory measures are recorded in the Department of Veterans Affairs (VA) Corporate Data Warehouse (CDW) across hospitals and over time. We included 6 laboratory tests commonly drawn within the first 24 hours of hospital admission (albumin, bilirubin, creatinine, hemoglobin, sodium, white blood cell count) from fiscal years 2005-2015.

RESULTS

We assessed laboratory test capture for 5,454,411 acute hospital admissions at 121 sites across the VA. The mapping of standardized laboratory nomenclature (Logical Observation Identifiers Names and Codes, LOINCs) to test results in CDW varied within hospital by laboratory test. The relationship between LOINCs and laboratory test names improved over time; by FY2015, 109 (95.6%) hospitals had >90% of the 6 laboratory tests mapped to an appropriate LOINC. All fields used to classify test results are provided in an Appendix (Supplemental Digital Content 1, http://links.lww.com/MLR/B635).

CONCLUSIONS

The use of electronic health record data for research requires assessing data consistency and quality. Using laboratory test results requires the use of both unstructured text fields and the identification of appropriate LOINCs. When using data from multiple facilities, the results should be carefully examined by facility and over time to maximize the capture of data fields.

摘要

背景

电子健康记录为研究和质量改进工作提供了丰富的临床数据。然而,这些数据通常是未结构化的文本,可能记录不一致,并且被提取到集中的数据库中,使得它们难以用于研究。

目的

我们旨在量化在退伍军人事务部(VA)企业数据仓库(CDW)中,关键实验室测量值在不同医院和不同时间的记录变化。我们包括了在住院的前 24 小时内通常抽取的 6 种实验室测试(白蛋白、胆红素、肌酐、血红蛋白、钠、白细胞计数),这些测试来自 2005 年至 2015 年的财政年度。

结果

我们评估了 VA 121 个地点的 5454411 例急性住院患者的实验室测试采集情况。标准化实验室命名法(逻辑观察标识符名称和代码,LOINCs)与 CDW 中测试结果的映射在医院内因实验室测试而异。LOINCs 和实验室测试名称之间的关系随着时间的推移而改善;到 FY2015 年,有 109 家(95.6%)医院将 6 种实验室测试中的 90%以上映射到适当的 LOINC。用于分类测试结果的所有字段都在附录中提供(补充数字内容 1,http://links.lww.com/MLR/B635)。

结论

电子健康记录数据用于研究需要评估数据的一致性和质量。使用实验室测试结果需要同时使用非结构化文本字段和识别适当的 LOINCs。当使用来自多个设施的数据时,应仔细检查每个设施和随时间推移的结果,以最大限度地捕获数据字段。

相似文献

3
A 20-Year Evaluation of LOINC in the United States' Largest Integrated Health System.
Arch Pathol Lab Med. 2020 Apr;144(4):478-484. doi: 10.5858/arpa.2019-0055-OA. Epub 2019 Aug 30.
5
Monitoring Variability of Laboratory Results in a Clinical Data Warehouse Using Automatic Dashboard.
Stud Health Technol Inform. 2024 Aug 22;316:1577-1581. doi: 10.3233/SHTI240722.
6
Automated Versus Semi-Automated Lab Value Extraction for the VA Cardiac Surgical Quality Improvement Program.
J Surg Res. 2024 Oct;302:47-52. doi: 10.1016/j.jss.2024.07.010. Epub 2024 Jul 30.
8
An approach to improve LOINC mapping through augmentation of local test names.
J Biomed Inform. 2012 Aug;45(4):651-7. doi: 10.1016/j.jbi.2011.12.004. Epub 2011 Dec 21.
9
Standardizing laboratory data by mapping to LOINC.
J Am Med Inform Assoc. 2006 May-Jun;13(3):353-5. doi: 10.1197/jamia.M1935. Epub 2006 Feb 24.

本文引用的文献

1
Using Veterans Affairs Corporate Data Warehouse to identify 30-day hospital readmissions.
Health Serv Outcomes Res Methodol. 2018 Sep;18(3):143-154. doi: 10.1007/s10742-018-0178-3. Epub 2018 Feb 19.
3
Clinical code set engineering for reusing EHR data for research: A review.
J Biomed Inform. 2017 Jun;70:1-13. doi: 10.1016/j.jbi.2017.04.010. Epub 2017 Apr 22.
4
Caveats for the use of operational electronic health record data in comparative effectiveness research.
Med Care. 2013 Aug;51(8 Suppl 3):S30-7. doi: 10.1097/MLR.0b013e31829b1dbd.
6
Next-generation phenotyping of electronic health records.
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. doi: 10.1136/amiajnl-2012-001145. Epub 2012 Sep 6.
7
Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research.
J Am Med Inform Assoc. 2013 Jan 1;20(1):144-51. doi: 10.1136/amiajnl-2011-000681. Epub 2012 Jun 25.
8
Standardizing clinical laboratory data for secondary use.
J Biomed Inform. 2012 Aug;45(4):642-50. doi: 10.1016/j.jbi.2012.04.012. Epub 2012 May 3.
9
Sensible use of observational clinical data.
Stat Methods Med Res. 2013 Feb;22(1):7-13. doi: 10.1177/0962280211403598. Epub 2011 Aug 9.
10
Infrastructure for quality transformation: measurement and reporting in veterans administration intensive care units.
BMJ Qual Saf. 2011 Jun;20(6):498-507. doi: 10.1136/bmjqs.2009.037218. Epub 2011 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验