Suppr超能文献

从大数据中推导体重:体重测量-清理算法的比较

Deriving Weight From Big Data: Comparison of Body Weight Measurement-Cleaning Algorithms.

作者信息

Evans Richard, Burns Jennifer, Damschroder Laura, Annis Ann, Freitag Michelle B, Raffa Susan, Wiitala Wyndy

机构信息

Center for Clinical Management Research, Veterans Health Administration, Ann Arbor, MI, United States.

College of Nursing, Michigan State University, Lansing, MI, United States.

出版信息

JMIR Med Inform. 2022 Mar 9;10(3):e30328. doi: 10.2196/30328.

Abstract

BACKGROUND

Patient body weight is a frequently used measure in biomedical studies, yet there are no standard methods for processing and cleaning weight data. Conflicting documentation on constructing body weight measurements presents challenges for research and program evaluation.

OBJECTIVE

In this study, we aim to describe and compare methods for extracting and cleaning weight data from electronic health record databases to develop guidelines for standardized approaches that promote reproducibility.

METHODS

We conducted a systematic review of studies published from 2008 to 2018 that used Veterans Health Administration electronic health record weight data and documented the algorithms for constructing patient weight. We applied these algorithms to a cohort of veterans with at least one primary care visit in 2016. The resulting weight measures were compared at the patient and site levels.

RESULTS

We identified 496 studies and included 62 (12.5%) that used weight as an outcome. Approximately 48% (27/62) included a replicable algorithm. Algorithms varied from cutoffs of implausible weights to complex models using measures within patients over time. We found differences in the number of weight values after applying the algorithms (71,961/1,175,995, 6.12% to 1,175,177/1,175,995, 99.93% of raw data) but little difference in average weights across methods (93.3, SD 21.0 kg to 94.8, SD 21.8 kg). The percentage of patients with at least 5% weight loss over 1 year ranged from 9.37% (4933/52,642) to 13.99% (3355/23,987).

CONCLUSIONS

Contrasting algorithms provide similar results and, in some cases, the results are not different from using raw, unprocessed data despite algorithm complexity. Studies using point estimates of weight may benefit from a simple cleaning rule based on cutoffs of implausible values; however, research questions involving weight trajectories and other, more complex scenarios may benefit from a more nuanced algorithm that considers all available weight data.

摘要

背景

患者体重是生物医学研究中常用的测量指标,但目前尚无处理和清理体重数据的标准方法。关于构建体重测量值的文献相互矛盾,给研究和项目评估带来了挑战。

目的

在本研究中,我们旨在描述和比较从电子健康记录数据库中提取和清理体重数据的方法,以制定促进可重复性的标准化方法指南。

方法

我们对2008年至2018年发表的使用退伍军人健康管理局电子健康记录体重数据并记录构建患者体重算法的研究进行了系统综述。我们将这些算法应用于2016年至少有一次初级保健就诊的退伍军人队列。在患者和站点层面比较了由此产生的体重测量值。

结果

我们识别出496项研究,其中62项(12.5%)将体重作为结果指标。约48%(27/62)的研究包含可重复的算法。算法各不相同,从不合理体重的截断值到使用患者随时间测量值的复杂模型。我们发现应用算法后体重值的数量存在差异(71,961/1,175,995,占原始数据的6.12%至1,175,177/1,175,995,占99.93%),但不同方法的平均体重差异不大(93.3,标准差21.0千克至94.8,标准差21.8千克)。1年内体重至少减轻5%的患者比例在9.37%(4933/52,642)至13.99%(3355/23,987)之间。

结论

不同的算法提供了相似的结果,在某些情况下,尽管算法复杂,但结果与使用原始未处理数据并无差异。使用体重点估计的研究可能受益于基于不合理值截断的简单清理规则;然而,涉及体重轨迹和其他更复杂情况研究问题可能受益于考虑所有可用体重数据的更细致算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb35/8943548/16eeaa56fed2/medinform_v10i3e30328_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验