Suppr超能文献

电感耦合等离子体质谱法和硒标记法测定受体-配体相互作用。

Receptor-Ligand Interaction Measured by Inductively Coupled Plasma Mass Spectrometry and Selenium Labeling.

机构信息

IBMM, University of Montpellier, CNRS, ENSCM , 34095 Montpellier , France.

CNRS/Univ Pau & Pays Adour/E2S UPPA , Institut des Sciences Analytiques et de Physico-Chimie pour L'Environnement et les Matériaux, UMR 5254 , 64000 Pau , France.

出版信息

J Med Chem. 2018 Nov 21;61(22):10173-10184. doi: 10.1021/acs.jmedchem.8b01320. Epub 2018 Nov 8.

Abstract

In the search for an alternative strategy to the radioactivity measurement conventionally performed to probe receptor-ligand interactions in pharmacological assays, we demonstrated that selenium labeling of the studied ligand combined with elemental mass spectrometry was as efficient and robust as the reference method but devoid of its environmental and health hazards. The proof-of-concept was illustrated on two GPCR receptors, vasopressin (V) and cholecystokinin B (CCK-B), involving peptides as endogenous ligands. We proposed several methodologies to produce selenium-labeled ligands according to peptide sequences along with binding affinity constraints. A selection of selenopeptides that kept high affinities toward the targeted receptor were engaged in saturation and competitive binding experiments with subsequent sensitive RP-LC-ICP-MS measurements. Experimental values of affinity constant ( K) were perfectly correlated to literature data, illustrating the general great potency of replacing radioactive iodine by selenium for ligand labeling to further undergo unaffected pharmacology experiments efficiently monitored by elemental mass spectrometry.

摘要

在寻找一种替代放射性测量的策略,以探测药理学测定中的受体-配体相互作用时,我们证明了研究配体的硒标记与元素质谱相结合,与参考方法一样高效和稳健,但没有其环境和健康危害。这一概念验证是基于两种 GPCR 受体(血管加压素 (V) 和胆囊收缩素 B (CCK-B))进行的,涉及作为内源性配体的肽。我们提出了几种根据肽序列和结合亲和力约束来生产硒标记配体的方法。选择了一些对靶受体保持高亲和力的硒肽,进行饱和和竞争结合实验,随后进行敏感的 RP-LC-ICP-MS 测量。亲和力常数 (K) 的实验值与文献数据完全相关,这说明了用硒替代放射性碘来标记配体以进一步进行不受影响的药理学实验的一般巨大潜力,这些实验可以通过元素质谱有效地监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验