Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, Germany.
Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany.
PLoS One. 2018 Nov 5;13(11):e0205755. doi: 10.1371/journal.pone.0205755. eCollection 2018.
Glucosinolates, a group of sulfur-rich thioglucosides found in plants of the order Brassicales, have attracted a lot of interest as chemical defenses of plants and health promoting substances in human diet. They are accumulated separately from their hydrolyzing enzymes, myrosinases, within the intact plant, but undergo myrosinase-catalyzed hydrolysis upon tissue disruption. This results in various biologically active products, e.g. isothiocyanates, simple nitriles, epithionitriles, and organic thiocyanates. While formation of isothiocyanates proceeds by a spontaneous rearrangement of the glucosinolate aglucone, aglucone conversion to the other products involves specifier proteins under physiological conditions. Specifier proteins appear to act with high specificity, but their exact roles and the structural bases of their specificity are presently unknown. Previous research identified the motif EXXXDXXXH as potential iron binding site required for activity, but crystal structures of recombinant specifier proteins lacked the iron cofactor. Here, we provide experimental evidence for the presence of iron (most likely Fe2+) in purified recombinant thiocyanate-forming protein from Thlaspi arvense (TaTFP) using a Ferene S-based photometric assay as well as Inductively Coupled Plasma-Mass Spectrometry. Iron binding and activity depend on E266, D270, and H274 suggesting a direct interaction of Fe2+ with these residues. Furthermore, we demonstrate presence of iron in epithiospecifier protein and nitrile-specifier protein 3 from Arabidopsis thaliana (AtESP and AtNSP3). We also present a homology model of AtNSP3. In agreement with this model, iron binding and activity of AtNSP3 depend on E386, D390, and H394. The homology model further suggests that the active site of AtNSP3 imposes fewer restrictions to the glucosinolate aglucone conformation than that of TaTFP and AtESP due to its larger size. This may explain why AtNSP3 does not support epithionitrile or thiocyanate formation, which likely requires exact positioning of the aglucone thiolate relative to the side chain.
硫代葡萄糖苷是一类富含硫的硫代葡萄糖苷,存在于芸苔目植物中,作为植物的化学防御物质和人类饮食中的健康促进物质,引起了人们的极大兴趣。它们在完整的植物中与水解酶(黑芥子酶)分开积累,但在组织破坏时会发生黑芥子酶催化的水解。这导致了各种生物活性产物,例如异硫氰酸酯、简单腈、表硫腈和有机硫氰酸酯。虽然异硫氰酸酯的形成是通过硫代葡萄糖苷无配基的自发重排进行的,但在生理条件下,无配基转化为其他产物涉及到特异性蛋白。特异性蛋白似乎具有高度特异性,但它们的确切作用及其特异性的结构基础目前尚不清楚。先前的研究确定了 motif EXXXDXXXH 作为活性所必需的潜在铁结合位点,但重组特异性蛋白的晶体结构缺乏铁辅因子。在这里,我们使用 Ferene S 基于比色法以及电感耦合等离子体质谱法,为纯化的来自野芥菜(Thlaspi arvense)的硫氰酸形成蛋白(TaTFP)中存在铁(很可能是 Fe2+)提供了实验证据。铁结合和活性依赖于 E266、D270 和 H274,表明 Fe2+与这些残基直接相互作用。此外,我们还证明了拟南芥中的表硫特异性蛋白和腈特异性蛋白 3(AtESP 和 AtNSP3)中存在铁。我们还展示了 AtNSP3 的同源模型。与该模型一致,AtNSP3 的铁结合和活性依赖于 E386、D390 和 H394。同源模型进一步表明,由于其较大的尺寸,AtNSP3 的活性位点对硫代葡萄糖苷无配基构象的限制比 TaTFP 和 AtESP 少。这可能解释了为什么 AtNSP3 不支持表硫腈或硫氰酸形成,这可能需要无配基硫醇相对于侧链的精确定位。