Burow Meike, Losansky Anja, Müller René, Plock Antje, Kliebenstein Daniel J, Wittstock Ute
Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
Plant Physiol. 2009 Jan;149(1):561-74. doi: 10.1104/pp.108.130732. Epub 2008 Nov 5.
Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.
硫代葡萄糖苷是一类硫代葡糖苷,是十字花目植物中活化化学防御的组成部分。植物组织受损会导致硫代葡萄糖苷被内源性硫代葡糖苷酶(即黑芥子酶)水解。糖苷配基的自发重排会产生对许多生物体有毒的活性异硫氰酸酯。在存在特异性蛋白的情况下,会形成具有不同生物活性的替代产物,即环硫腈、简单腈和硫氰酸盐,而异硫氰酸酯的生成则会减少。最近,人们认识到简单腈在植物与昆虫的相互作用中具有独特的功能。在此,我们表明,拟南芥生态型哥伦比亚-0莲座叶中简单腈的形成会因食草作用而增加,且这种增加与已知的环硫特异性蛋白(ESP)无关。我们结合系统发育分析、拟南芥突变体筛选、重组蛋白表征和表达数量性状位点定位,以鉴定一个编码腈特异性蛋白(NSP)的基因,该基因负责哥伦比亚-0莲座叶中组成型和食草动物诱导的简单腈的形成。AtNSP1是拟南芥五个ESP同源物之一,可促进简单腈的形成,但不促进环硫腈或硫氰酸盐的形成。这些同源物中的四个具有一个或两个凝集素样jacalin结构域,它们与假定的拟南芥黑芥子酶结合蛋白MBP1和MBP2的jacalin结构域有着共同的祖先。第六个ESP同源物缺乏特异性活性,可能代表了具有不同生化功能的基因家族的祖先。通过揭示简单腈形成的遗传和生化基础,我们的研究为复杂植物防御系统中代谢多样性的进化提供了新的见解。