Suppr超能文献

细胞内 fascin 分布的协调调节控制肿瘤微泡释放和侵袭细胞能力。

Coordinated Regulation of Intracellular Fascin Distribution Governs Tumor Microvesicle Release and Invasive Cell Capacity.

机构信息

Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA.

Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA

出版信息

Mol Cell Biol. 2019 Jan 16;39(3). doi: 10.1128/MCB.00264-18. Print 2019 Feb 1.

Abstract

Tumor cell invasion is one result of the bidirectional interactions occurring between tumor cells and the surrounding milieu. The ability of tumor cells to invade through the extracellular matrix is in part regulated by the formation of a class of protease-loaded extracellular vesicles, called tumor microvesicles (TMVs), which are released directly from the cell surface. Here we show that the actin bundling protein, fascin, redistributes to the cell periphery in a ternary complex with podocalyxin and ezrin, where it promotes TMV release. The peripheral localization of fascin is prompted by the loss of Rab35 signaling, which in turn unleashes ARF6 activation. The result is a mechanism through which Rab35 and ARF6 cooperatively and simultaneously regulate the distribution and localization of fascin and promote oncogenic signaling, which leads to TMV release while inhibiting invadopodium formation. These studies are clinically significant as fascin-loaded TMVs can be detected in bodily fluids and elevated fascin expression coupled with low Rab35 levels correlates with poor overall survival in some cancers.

摘要

肿瘤细胞侵袭是肿瘤细胞与周围环境发生双向相互作用的结果之一。肿瘤细胞穿过细胞外基质的能力部分受到一类蛋白酶装载的细胞外囊泡(称为肿瘤微囊泡,TMVs)的形成的调节,这些囊泡直接从细胞表面释放。在这里,我们表明肌动蛋白束蛋白(fascin)与足细胞蛋白(podocalyxin)和埃兹蛋白(ezrin)形成三元复合物重新分布到细胞外周,从而促进 TMV 的释放。fascin 的外周定位是由 Rab35 信号的丧失引起的,这反过来又释放了 ARF6 的激活。其结果是一种机制,通过该机制 Rab35 和 ARF6 协同且同时调节 fascin 的分布和定位,并促进致癌信号,从而导致 TMV 的释放,同时抑制侵袭小体的形成。这些研究在临床上具有重要意义,因为在体液中可以检测到负载 fascin 的 TMVs,并且 fascin 表达升高加上 Rab35 水平降低与某些癌症中的总体生存率降低相关。

相似文献

2
Rab35 controls actin bundling by recruiting fascin as an effector protein.
Science. 2009 Sep 4;325(5945):1250-4. doi: 10.1126/science.1174921.
4
Roles of fascin in cell adhesion and motility.
Curr Opin Cell Biol. 2004 Oct;16(5):590-6. doi: 10.1016/j.ceb.2004.07.009.
7
Cell-matrix adhesions differentially regulate fascin phosphorylation.
Mol Biol Cell. 1999 Dec;10(12):4177-90. doi: 10.1091/mbc.10.12.4177.
9
Fascin Regulates Nuclear Movement and Deformation in Migrating Cells.
Dev Cell. 2016 Aug 22;38(4):371-83. doi: 10.1016/j.devcel.2016.07.021.
10
Fascin is involved in cancer cell invasion and is regulated by stromal factors.
Oncol Rep. 2019 Jan;41(1):465-474. doi: 10.3892/or.2018.6847. Epub 2018 Nov 2.

引用本文的文献

1
Identification and validation of ARF6 for a potential prognostic biomarker of acute myeloid leukemia.
Cancer Cell Int. 2025 Jun 20;25(1):218. doi: 10.1186/s12935-025-03847-2.
4
Extracellular Vesicles in Neurodegenerative Diseases: An Update.
Int J Mol Sci. 2023 Aug 24;24(17):13161. doi: 10.3390/ijms241713161.
5
Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges.
Int J Mol Sci. 2023 Apr 14;24(8):7287. doi: 10.3390/ijms24087287.
6
Preclinical-to-clinical Anti-cancer Drug Response Prediction and Biomarker Identification Using TINDL.
Genomics Proteomics Bioinformatics. 2023 Jun;21(3):535-550. doi: 10.1016/j.gpb.2023.01.006. Epub 2023 Feb 11.
8
How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers.
Front Pharmacol. 2022 Oct 6;13:962652. doi: 10.3389/fphar.2022.962652. eCollection 2022.
9
Tumor-Derived Extracellular Vesicles: Multifunctional Entities in the Tumor Microenvironment.
Annu Rev Pathol. 2023 Jan 24;18:205-229. doi: 10.1146/annurev-pathmechdis-031521-022116. Epub 2022 Oct 6.
10
FSCN1 Promotes Esophageal Carcinoma Progression Through Downregulating PTK6 its RNA-Binding Protein Effect.
Front Pharmacol. 2022 Mar 23;13:868296. doi: 10.3389/fphar.2022.868296. eCollection 2022.

本文引用的文献

1
Mapping the Spatial Proteome of Metastatic Cells in Colorectal Cancer.
Proteomics. 2017 Oct;17(19). doi: 10.1002/pmic.201700094.
2
miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients.
Breast Cancer Res Treat. 2016 Dec;160(3):439-446. doi: 10.1007/s10549-016-4013-7. Epub 2016 Oct 15.
3
Plasticity of Cell Migration In Vivo and In Silico.
Annu Rev Cell Dev Biol. 2016 Oct 6;32:491-526. doi: 10.1146/annurev-cellbio-111315-125201. Epub 2016 Aug 26.
4
Biology and biogenesis of shed microvesicles.
Small GTPases. 2017 Oct 2;8(4):220-232. doi: 10.1080/21541248.2016.1215283. Epub 2016 Aug 5.
5
Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond.
Traffic. 2016 Oct;17(10):1063-77. doi: 10.1111/tra.12422. Epub 2016 Jul 14.
6
Extracellular Vesicles: Satellites of Information Transfer in Cancer and Stem Cell Biology.
Dev Cell. 2016 May 23;37(4):301-309. doi: 10.1016/j.devcel.2016.04.019.
7
Regulation of podocalyxin trafficking by Rab small GTPases in 2D and 3D epithelial cell cultures.
J Cell Biol. 2016 May 9;213(3):355-69. doi: 10.1083/jcb.201512024. Epub 2016 May 2.
8
Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.
Cell Mol Neurobiol. 2016 Apr;36(3):301-12. doi: 10.1007/s10571-016-0366-z. Epub 2016 Apr 6.
10
Identification of an oncogenic RAB protein.
Science. 2015 Oct 9;350(6257):211-7. doi: 10.1126/science.aaa4903. Epub 2015 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验