Suppr超能文献

人源 mARC1 的晶体结构揭示了其在真核钼酶中的特殊地位。

Crystal structure of human mARC1 reveals its exceptional position among eukaryotic molybdenum enzymes.

机构信息

Structural Biology, Zoological Institute, Kiel University, 24118 Kiel, Germany.

Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany.

出版信息

Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):11958-11963. doi: 10.1073/pnas.1808576115. Epub 2018 Nov 5.

Abstract

Biotransformation enzymes ensure a viable homeostasis by regulating reversible cycles of oxidative and reductive reactions. The metabolism of nitrogen-containing compounds is of high pharmaceutical and toxicological relevance because N-oxygenated metabolites derived from reactions mediated by cytochrome P450 enzymes or flavin-dependent monooxygenases are in some cases highly toxic or mutagenic. The molybdenum-dependent mitochondrial amidoxime-reducing component (mARC) was found to be an extremely efficient counterpart, which is able to reduce the full range of N-oxygenated compounds and thereby mediates detoxification reactions. However, the 3D structure of this enzyme was unknown. Here we present the high-resolution crystal structure of human mARC. We give detailed insight into the coordination of its molybdenum cofactor (Moco), the catalytic mechanism, and its ability to reduce a wide range of N-oxygenated compounds. The identification of two key residues will allow future discrimination between mARC paralogs and ensure correct annotation. Since our structural findings contradict in silico predictions that are currently made by online databases, we propose domain definitions for members of the superfamily of Moco sulfurase C-terminal (MOSC) domain-containing proteins. Furthermore, we present evidence for an evolutionary role of mARC for the emergence of the xanthine oxidase protein superfamily. We anticipate the hereby presented crystal structure to be a starting point for future descriptions of MOSC proteins, which are currently poorly structurally characterized.

摘要

生物转化酶通过调节氧化和还原反应的可逆循环来确保可行的动态平衡。含氮化合物的代谢具有很高的药物和毒理学相关性,因为细胞色素 P450 酶或黄素依赖性单加氧酶介导的反应衍生的 N-氧化代谢物在某些情况下是高度毒性或致突变的。已经发现钼依赖的线粒体酰胺还原成分 (mARC) 是一种非常有效的对应物,它能够还原全范围的 N-氧化化合物,从而介导解毒反应。然而,这种酶的 3D 结构尚不清楚。在这里,我们呈现了人 mARC 的高分辨率晶体结构。我们详细了解了其钼辅因子 (Moco) 的配位、催化机制以及还原广泛 N-氧化化合物的能力。两个关键残基的鉴定将允许未来区分 mARC 旁系同源物,并确保正确注释。由于我们的结构发现与目前在线数据库做出的计算预测相矛盾,因此我们为 MOSC 域包含蛋白超家族的成员提出了域定义。此外,我们提出了 mARC 在黄嘌呤氧化酶蛋白超家族出现中的进化作用的证据。我们预计在此呈现的晶体结构将成为未来 MOSC 蛋白描述的起点,目前这些蛋白的结构特征很差。

相似文献

3
The mammalian molybdenum enzymes of mARC.哺乳动物中含钼辅助因子还原酶(mARC)的酶类
J Biol Inorg Chem. 2015 Mar;20(2):265-75. doi: 10.1007/s00775-014-1216-4. Epub 2014 Nov 26.
4
The fourth mammalian molybdenum enzyme mARC: current state of research.第四种哺乳动物钼酶 mARC:研究现状。
Drug Metab Rev. 2011 Nov;43(4):524-39. doi: 10.3109/03602532.2011.608682. Epub 2011 Sep 26.

引用本文的文献

4
mARC1 Is the Main Contributor to Metabolic Reduction of -Hydroxyurea.mARC1 是代谢降低 - 羟基脲的主要贡献者。
J Med Chem. 2024 Oct 24;67(20):18090-18097. doi: 10.1021/acs.jmedchem.4c01148. Epub 2024 Oct 13.

本文引用的文献

2
T4 lysozyme-facilitated crystallization of the human molybdenum cofactor-dependent enzyme mARC.T4溶菌酶促进人钼辅因子依赖性酶mARC的结晶。
Acta Crystallogr F Struct Biol Commun. 2018 Jun 1;74(Pt 6):337-344. doi: 10.1107/S2053230X18006921. Epub 2018 May 17.
5
Improvements to the APBS biomolecular solvation software suite.APBS生物分子溶剂化软件套件的改进。
Protein Sci. 2018 Jan;27(1):112-128. doi: 10.1002/pro.3280. Epub 2017 Oct 24.
9
Dali server update.大理服务器更新。
Nucleic Acids Res. 2016 Jul 8;44(W1):W351-5. doi: 10.1093/nar/gkw357. Epub 2016 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验