Hartikainen Saara M, Jach Agnieszka, Grané Aurea, Robson Thomas Matthew
OEB, Viikki Plant Science Centre University of Helsinki Helsinki Finland.
Department of Finance and Statistics Hanken School of Economics Helsinki Finland.
Ecol Evol. 2018 Sep 12;8(20):10206-10218. doi: 10.1002/ece3.4496. eCollection 2018 Oct.
Forest canopies create dynamic light environments in their understorey, where spectral composition changes among patterns of shade and sunflecks, and through the seasons with canopy phenology and sun angle. Plants use spectral composition as a cue to adjust their growth strategy for optimal resource use. Quantifying the ever-changing nature of the understorey light environment is technically challenging with respect to data collection. Thus, to capture the simultaneous variation occurring in multiple regions of the solar spectrum, we recorded spectral irradiance from forest understoreys over the wavelength range 300-800 nm using an array spectroradiometer. It is also methodologically challenging to analyze solar spectra because of their multi-scale nature and multivariate lay-out. To compare spectra, we therefore used a novel method termed thick pen transform (TPT), which is simple and visually interpretable. This enabled us to show that sunlight position in the forest understorey (i.e., shade, semi-shade, or sunfleck) was the most important factor in determining shape similarity of spectral irradiance. Likewise, the contributions of stand identity and time of year could be distinguished. Spectra from sunflecks were consistently the most similar, irrespective of differences in global irradiance. On average, the degree of cross-dependence increased with increasing scale, sometimes shifting from negative (dissimilar) to positive (similar) values. We conclude that the interplay of sunlight position, stand identity, and date cannot be ignored when quantifying and comparing spectral composition in forest understoreys. Technological advances mean that array spectroradiometers, which can record spectra contiguously over very short time intervals, are being widely adopted, not only to measure irradiance under pollution, clouds, atmospheric changes, and in biological systems, but also spectral changes at small scales in the photonics industry. We consider that TPT is an applicable method for spectral analysis in any field and can be a useful tool to analyze large datasets in general.
森林冠层在其下层创造了动态的光照环境,在该环境中,光谱组成会在阴影和光斑模式之间发生变化,并且会随着冠层物候和太阳角度的季节变化而改变。植物利用光谱组成作为线索来调整其生长策略,以实现资源的最优利用。就数据收集而言,量化林下光照环境不断变化的特性在技术上具有挑战性。因此,为了捕捉太阳光谱多个区域同时发生的变化,我们使用阵列光谱辐射计记录了森林下层在300 - 800纳米波长范围内的光谱辐照度。由于太阳光谱具有多尺度性质和多变量布局,对其进行分析在方法上也具有挑战性。因此,为了比较光谱,我们使用了一种称为粗笔变换(TPT)的新方法,该方法简单且具有视觉可解释性。这使我们能够表明,森林下层阳光的位置(即阴影、半阴影或光斑)是决定光谱辐照度形状相似性的最重要因素。同样,可以区分林分特征和年份时间的贡献。无论总辐照度如何不同,光斑的光谱始终最为相似。平均而言,交叉依赖程度随着尺度的增加而增加,有时会从负值(不相似)转变为正值(相似)。我们得出结论,在量化和比较森林下层的光谱组成时,阳光位置、林分特征和日期之间的相互作用不容忽视。技术进步意味着能够在非常短的时间间隔内连续记录光谱的阵列光谱辐射计正在被广泛采用,不仅用于测量污染、云层、大气变化以及生物系统下的辐照度,还用于光子学行业小尺度的光谱变化测量。我们认为TPT是适用于任何领域光谱分析的方法,总体上可以成为分析大型数据集的有用工具。