Suppr超能文献

傅里叶变换红外光谱分析冷冻保存白细胞复温损伤相关的分子变化。

FTIR Analysis of Molecular Changes Associated with Warming Injury in Cryopreserved Leukocytes.

机构信息

Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.

Department of Mechanical Engineering , Villanova University , Villanova , Pennsylvania 19085 , United States.

出版信息

Langmuir. 2019 Jun 11;35(23):7552-7559. doi: 10.1021/acs.langmuir.8b02982. Epub 2018 Nov 16.

Abstract

In this article, we explored the effects of cooling rate, dimethyl sulfoxide (DMSO) concentration, and thawing protocol on the post-thaw viability of frozen human white blood cells (WBCs). Different cooling rates (1, 2, 5, 10, 20, and 50 °C/min) at two DMSO concentrations (5 and 10% v/v) were tested as the samples were cooled to -120 °C. Frozen samples were thawed following either a fast (100 °C/min) or slow (2 °C/min) warming protocol applied in either a single stage or in two stages interrupted by a 6 min hold at -40, -50, -60, -70, or -80 °C. The highest post-thaw viability was obtained when WBCs were cooled at 2 °C/min in a 5% DMSO solution and warmed at the fastest rate (100 °C/min) without any interruption. Post-thaw viability decreased when the warming rate was reduced or when rapid warming was interrupted by a hold at a temperature below -60 °C. To elucidate the mechanisms of warming injury in addition to the biological response, several key interfacial and molecular phenomena require greater understanding; thus, we used Fourier transform infrared (FTIR) spectroscopy to investigate the roles of molecular structure and conformation in damage to cryopreserved WBCs during warming. During warming, FTIR spectra revealed the accumulation of cellular protein and lipid membrane damage below -60 °C if the samples were thawed slowly at 2 °C/min. The results presented here suggest that irreversible alterations of biomolecular structure are correlated with cell injury during warming; these deleterious effects appeared to be caused by one or more low-temperature kinetic processes, consistent with eutectic formation/melting and/or devitrification in the intracellular milieu.

摘要

本文探讨了冷却速率、二甲亚砜(DMSO)浓度和解冻方案对冷冻人白细胞(WBC)解冻后活力的影响。在冷却至-120°C 时,测试了两种 DMSO 浓度(5%和 10%v/v)下的不同冷却速率(1、2、5、10、20 和 50°C/min)。冷冻样品采用快速(100°C/min)或慢速(2°C/min)解冻方案解冻,快速解冻方案在单一阶段或在-40、-50、-60、-70 或-80°C 下暂停 6 分钟的两个阶段之间进行。当 WBC 在 5% DMSO 溶液中以 2°C/min 的速度冷却并以最快的速度(100°C/min)解冻而没有任何中断时,获得了最高的解冻后活力。当降低升温速度或在低于-60°C 的温度下暂停快速升温时,解冻后活力会降低。为了除了生物学反应之外阐明升温损伤的机制,需要更深入地了解几个关键的界面和分子现象;因此,我们使用傅里叶变换红外(FTIR)光谱法研究了在升温过程中分子结构和构象在冷冻 WBC 损伤中的作用。在升温过程中,FTIR 光谱在缓慢升温(2°C/min)时低于-60°C 时,揭示了细胞蛋白质和脂质膜损伤的积累。这里提出的结果表明,生物分子结构的不可逆改变与升温过程中的细胞损伤有关;这些有害影响似乎是由一个或多个低温动力学过程引起的,与细胞内环境中的共晶形成/熔化和/或玻璃化转变一致。

相似文献

1
FTIR Analysis of Molecular Changes Associated with Warming Injury in Cryopreserved Leukocytes.
Langmuir. 2019 Jun 11;35(23):7552-7559. doi: 10.1021/acs.langmuir.8b02982. Epub 2018 Nov 16.
3
Effect of Warming Process on the Survival of Cryopreserved Human Peripheral Blood Mononuclear Cells.
Biopreserv Biobank. 2021 Aug;19(4):318-323. doi: 10.1089/bio.2020.0058. Epub 2021 May 28.
4
Effects of cooling and warming conditions on post-thawed motility and fertility of cryopreserved buffalo spermatozoa.
Anim Reprod Sci. 2001 Jul 3;67(1-2):69-77. doi: 10.1016/s0378-4320(01)00109-9.
5
Effect of warming rate on mouse embryos frozen and thawed in glycerol.
J Reprod Fertil. 1984 Jan;70(1):285-92. doi: 10.1530/jrf.0.0700285.
6
Damage and protection of UC blood cells during cryopreservation.
Cytotherapy. 2001;3(5):377-86. doi: 10.1080/146532401753277193.
8
Sperm cryopreservation of a live-bearing fish, the platyfish Xiphophorus couchianus.
Theriogenology. 2004 Sep 15;62(6):971-89. doi: 10.1016/j.theriogenology.2003.12.022.
9
Freezing Responses in DMSO-Based Cryopreservation of Human iPS Cells: Aggregates Versus Single Cells.
Tissue Eng Part C Methods. 2018 May;24(5):289-299. doi: 10.1089/ten.TEC.2017.0531. Epub 2018 Mar 28.

引用本文的文献

2
Biomolecular Pathways of Cryoinjuries in Low-Temperature Storage for Mammalian Specimens.
Bioengineering (Basel). 2022 Oct 12;9(10):545. doi: 10.3390/bioengineering9100545.

本文引用的文献

2
Effects of Excipient Interactions on the State of the Freeze-Concentrate and Protein Stability.
Pharm Res. 2017 Feb;34(2):462-478. doi: 10.1007/s11095-016-2078-y. Epub 2016 Dec 15.
4
Cryopreservation of cells: FT-IR monitoring of lipid membrane at freeze-thaw cycles.
Biophys Chem. 2016 Jan;208:34-9. doi: 10.1016/j.bpc.2015.08.001. Epub 2015 Aug 6.
5
Direct Comparison of Disaccharide Interaction with Lipid Membranes at Reduced Hydrations.
Langmuir. 2015 Aug 25;31(33):9134-41. doi: 10.1021/acs.langmuir.5b02127. Epub 2015 Aug 11.
6
A Fourier transform infrared spectroscopy study of cell membrane domain modifications induced by docosahexaenoic acid.
Biochim Biophys Acta. 2014 Oct;1840(10):3115-22. doi: 10.1016/j.bbagen.2014.07.003. Epub 2014 Jul 10.
8
Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy.
Biochemistry. 2013 Aug 6;52(31):5176-83. doi: 10.1021/bi400625v. Epub 2013 Jul 22.
10
Stability of cryopreserved white blood cells (WBCs) prepared for donor WBC infusions.
Transfusion. 2011 Dec;51(12):2647-55. doi: 10.1111/j.1537-2995.2011.03210.x. Epub 2011 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验