O K Fasil, R Rajesh
Department of Computer Science, Central University of Kerala, Periye, Kasaragod, Kerala, India.
Neurosci Lett. 2019 Feb 16;694:1-8. doi: 10.1016/j.neulet.2018.10.062. Epub 2018 Nov 3.
Automatic classification and prediction of epileptic electroencephalogram (EEG) signal are of great concern to the research community due to its non-stationary and non-linear properties. Features with minimal computation cost are highly needed for the rapid real-time precise diagnosis and implementation in the EEG scanning devices. Even though energy is a well-known feature for the analysis of signals, it is very rarely used in EEG analysis. An exponential energy feature in the time domain is proposed in this study. The proposed exponential energy feature provides a classification accuracy of 89% in the Bern-Barcelona EEG dataset and 99.5% in the Ralph Andrzejak EEG dataset. The promising results open a wide applicability of exponential energy in biomedical signal analysis.
由于癫痫脑电图(EEG)信号具有非平稳和非线性特性,其自动分类和预测受到了研究界的广泛关注。对于脑电图扫描设备中的快速实时精确诊断和应用,迫切需要计算成本最低的特征。尽管能量是信号分析中一个众所周知的特征,但它在脑电图分析中很少被使用。本研究提出了一种时域中的指数能量特征。所提出的指数能量特征在Bern-Barcelona脑电图数据集上的分类准确率为89%,在Ralph Andrzejak脑电图数据集上的分类准确率为99.5%。这些有前景的结果为指数能量在生物医学信号分析中的广泛应用开辟了道路。