Suppr超能文献

使用机器学习技术检测脑电图(EEG)信号中的癫痫发作

Epileptic seizure detection in EEG signal using machine learning techniques.

作者信息

Jaiswal Abeg Kumar, Banka Haider

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.

出版信息

Australas Phys Eng Sci Med. 2018 Mar;41(1):81-94. doi: 10.1007/s13246-017-0610-y. Epub 2017 Dec 20.

Abstract

Epilepsy is a well-known nervous system disorder characterized by seizures. Electroencephalograms (EEGs), which capture brain neural activity, can detect epilepsy. Traditional methods for analyzing an EEG signal for epileptic seizure detection are time-consuming. Recently, several automated seizure detection frameworks using machine learning technique have been proposed to replace these traditional methods. The two basic steps involved in machine learning are feature extraction and classification. Feature extraction reduces the input pattern space by keeping informative features and the classifier assigns the appropriate class label. In this paper, we propose two effective approaches involving subpattern based PCA (SpPCA) and cross-subpattern correlation-based PCA (SubXPCA) with Support Vector Machine (SVM) for automated seizure detection in EEG signals. Feature extraction was performed using SpPCA and SubXPCA. Both techniques explore the subpattern correlation of EEG signals, which helps in decision-making process. SVM is used for classification of seizure and non-seizure EEG signals. The SVM was trained with radial basis kernel. All the experiments have been carried out on the benchmark epilepsy EEG dataset. The entire dataset consists of 500 EEG signals recorded under different scenarios. Seven different experimental cases for classification have been conducted. The classification accuracy was evaluated using tenfold cross validation. The classification results of the proposed approaches have been compared with the results of some of existing techniques proposed in the literature to establish the claim.

摘要

癫痫是一种以癫痫发作为特征的著名神经系统疾病。脑电图(EEG)能够捕捉大脑神经活动,可用于检测癫痫。传统的分析脑电图信号以检测癫痫发作的方法耗时较长。最近,已提出几种使用机器学习技术的自动癫痫发作检测框架来取代这些传统方法。机器学习涉及的两个基本步骤是特征提取和分类。特征提取通过保留信息特征来减少输入模式空间,而分类器则分配适当的类别标签。在本文中,我们提出了两种有效的方法,即基于子模式的主成分分析(SpPCA)和基于交叉子模式相关性的主成分分析(SubXPCA),并结合支持向量机(SVM)用于脑电图信号的自动癫痫发作检测。使用SpPCA和SubXPCA进行特征提取。这两种技术都探索了脑电图信号的子模式相关性,这有助于决策过程。SVM用于癫痫发作和非癫痫发作脑电图信号的分类。SVM使用径向基核进行训练。所有实验均在基准癫痫脑电图数据集上进行。整个数据集由在不同场景下记录的500个脑电图信号组成。已经进行了七个不同的分类实验案例。使用十折交叉验证评估分类准确率。将所提出方法的分类结果与文献中提出的一些现有技术的结果进行比较以验证该主张。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验