Suppr超能文献

机器学习技术在临床预测建模中的应用:中国非酒精性脂肪性肝病的横断面研究。

Application of Machine Learning Techniques for Clinical Predictive Modeling: A Cross-Sectional Study on Nonalcoholic Fatty Liver Disease in China.

机构信息

Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.

出版信息

Biomed Res Int. 2018 Oct 3;2018:4304376. doi: 10.1155/2018/4304376. eCollection 2018.

Abstract

BACKGROUND

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. Machine learning techniques were introduced to evaluate the optimal predictive clinical model of NAFLD.

METHODS

A cross-sectional study was performed with subjects who attended a health examination at the First Affiliated Hospital, Zhejiang University. Questionnaires, laboratory tests, physical examinations, and liver ultrasonography were employed. Machine learning techniques were then implemented using the open source software Weka. The tasks included feature selection and classification. Feature selection techniques built a screening model by removing the redundant features. Classification was used to build a prediction model, which was evaluated by the F-measure. 11 state-of-the-art machine learning techniques were investigated.

RESULTS

Among the 10,508 enrolled subjects, 2,522 (24%) met the diagnostic criteria of NAFLD. By leveraging a set of statistical testing techniques, BMI, triglycerides, gamma-glutamyl transpeptidase (GT), the serum alanine aminotransferase (ALT), and uric acid were the top 5 features contributing to NAFLD. A 10-fold cross-validation was used in the classification. According to the results, the Bayesian network model demonstrated the best performance from among the 11 different techniques. It achieved accuracy, specificity, sensitivity, and F-measure scores of up to 83%, 0.878, 0.675, and 0.655, respectively. Compared with logistic regression, the Bayesian network model improves the F-measure score by 9.17%.

CONCLUSION

Novel machine learning techniques may have screening and predictive value for NAFLD.

摘要

背景

非酒精性脂肪性肝病(NAFLD)是最常见的慢性肝病之一。引入机器学习技术来评估 NAFLD 的最佳预测临床模型。

方法

对在浙江大学第一附属医院进行健康检查的受试者进行横断面研究。采用问卷调查、实验室检查、体格检查和肝脏超声检查。然后使用开源软件 Weka 实施机器学习技术。任务包括特征选择和分类。特征选择技术通过去除冗余特征构建筛选模型。分类用于构建预测模型,通过 F 度量进行评估。研究了 11 种最先进的机器学习技术。

结果

在纳入的 10508 名受试者中,2522 名(24%)符合 NAFLD 的诊断标准。通过利用一系列统计检验技术,BMI、甘油三酯、γ-谷氨酰转肽酶(GT)、血清丙氨酸氨基转移酶(ALT)和尿酸是导致 NAFLD 的前 5 个特征。在分类中使用了 10 倍交叉验证。根据结果,贝叶斯网络模型在 11 种不同技术中表现出最佳性能。它达到了高达 83%、0.878、0.675 和 0.655 的准确性、特异性、敏感性和 F 度量分数。与逻辑回归相比,贝叶斯网络模型将 F 度量分数提高了 9.17%。

结论

新型机器学习技术可能对 NAFLD 具有筛选和预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bb3/6192080/a3cfb31c5028/BMRI2018-4304376.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验