Suppr超能文献

机器学习算法在临床预测建模中的应用:造血干细胞移植中的一种数据挖掘方法

Application of machine learning algorithms for clinical predictive modeling: a data-mining approach in SCT.

作者信息

Shouval R, Bondi O, Mishan H, Shimoni A, Unger R, Nagler A

机构信息

1] The Division of Hematology and Bone Marrow Transplantation and Internal Medicine "F" Department, The Chaim Sheba Medical Center, Tel HaShomer, Israel [2] 2013 Pinchas Borenstein Talpiot Medical Leadership Program, The Chaim Sheba Medical Center, Tel HaShomer, Israel.

The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.

出版信息

Bone Marrow Transplant. 2014 Mar;49(3):332-7. doi: 10.1038/bmt.2013.146. Epub 2013 Oct 7.

Abstract

Data collected from hematopoietic SCT (HSCT) centers are becoming more abundant and complex owing to the formation of organized registries and incorporation of biological data. Typically, conventional statistical methods are used for the development of outcome prediction models and risk scores. However, these analyses carry inherent properties limiting their ability to cope with large data sets with multiple variables and samples. Machine learning (ML), a field stemming from artificial intelligence, is part of a wider approach for data analysis termed data mining (DM). It enables prediction in complex data scenarios, familiar to practitioners and researchers. Technological and commercial applications are all around us, gradually entering clinical research. In the following review, we would like to expose hematologists and stem cell transplanters to the concepts, clinical applications, strengths and limitations of such methods and discuss current research in HSCT. The aim of this review is to encourage utilization of the ML and DM techniques in the field of HSCT, including prediction of transplantation outcome and donor selection.

摘要

由于有组织的登记系统的形成以及生物数据的纳入,从造血干细胞移植(HSCT)中心收集的数据正变得越来越丰富和复杂。通常,传统统计方法用于开发结局预测模型和风险评分。然而,这些分析具有固有的特性,限制了它们处理具有多个变量和样本的大数据集的能力。机器学习(ML)是人工智能衍生出的一个领域,是被称为数据挖掘(DM)的更广泛数据分析方法的一部分。它能够在复杂的数据场景中进行预测,这对从业者和研究人员来说并不陌生。技术和商业应用在我们周围随处可见,并逐渐进入临床研究领域。在以下综述中,我们希望让血液科医生和干细胞移植医生了解这些方法的概念、临床应用、优势和局限性,并讨论HSCT领域的当前研究。本综述的目的是鼓励在HSCT领域利用ML和DM技术,包括移植结局预测和供体选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验