Suppr超能文献

Sapap3 基因敲除强迫症小鼠模型的外侧眶额皮层功能障碍。

Lateral orbitofrontal dysfunction in the Sapap3 knockout mouse model of obsessive–compulsive disorder.

机构信息

From the Department of Neurobiology, Beijing Institute for Brain Disorders, Beijing Centre of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Capital Medical University, Beijing, China (Lei, Lai, Sun, Xu); the McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts (Feng); and the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts (Feng).

出版信息

J Psychiatry Neurosci. 2019 Mar 1;44(2):120-131. doi: 10.1503/jpn.180032.

Abstract

BACKGROUND

Obsessive–compulsive disorder (OCD) is a common psychiatric disorder that affects about 2% of the population, but the underlying neuropathophysiology of OCD is not well understood. Although increasing lines of evidence implicate dysfunction of the orbitofrontal cortex (OFC) in OCD, a detailed understanding of the functional alterations in different neuronal types in the OFC is still elusive.

METHODS

We investigated detailed activity pattern changes in putative pyramidal neurons and interneurons, as well as local field potential oscillations, in the lateral OFC underlying OCD-relevant phenotypes. We applied in vivo multichannel recording in an awake OCD mouse model that carried a deletion of the Sapap3 gene, and in wildtype littermates.

RESULTS

Compared with wildtype mice, the lateral OFC of Sapap3 knockout mice exhibited network dysfunction, demonstrated by decreased power of local field potential oscillations. The activity of inhibitory and excitatory neurons in the lateral OFC showed distinct perturbations in Sapap3 knockout mice: putative interneurons exhibited increased activity; putative pyramidal neurons exhibited enhanced bursting activity; and both putative pyramidal neurons and interneurons exhibited enhanced discharge variability and altered synchronization.

LIMITATIONS

To exclude motor activity confounders, this study examined functional alterations in lateral OFC neurons only when the mice were stationary.

CONCLUSION

We provide, to our knowledge, the first direct in vivo electrophysiological evidence of detailed functional alterations in different neuronal types in the lateral OFC of an OCD mouse model. These findings may help in understanding the underlying neuropathophysiology and circuitry mechanisms for phenotypes relevant to OCD, and may help generate and refine hypotheses about potential biomarkers for further investigation.

摘要

背景

强迫症(OCD)是一种常见的精神疾病,影响约 2%的人口,但 OCD 的潜在神经病理生理学尚不清楚。尽管越来越多的证据表明眶额皮层(OFC)的功能障碍与 OCD 有关,但对于 OFC 中不同神经元类型的功能改变仍缺乏详细的了解。

方法

我们研究了在与 OCD 相关表型相关的外侧 OFC 中,假定的锥体神经元和中间神经元以及局部场电位振荡的详细活动模式变化。我们在携带 Sapap3 基因缺失的清醒 OCD 小鼠模型中和野生型同窝仔鼠中应用了活体多通道记录。

结果

与野生型小鼠相比,Sapap3 敲除小鼠的外侧 OFC 表现出网络功能障碍,表现为局部场电位振荡的功率降低。外侧 OFC 中抑制性和兴奋性神经元的活动在 Sapap3 敲除小鼠中表现出明显的扰动:假定中间神经元的活动增加;假定锥体神经元表现出增强的爆发活动;并且假定锥体神经元和中间神经元都表现出增强的放电变异性和改变的同步性。

局限性

为了排除运动活动的混杂因素,本研究仅在小鼠静止时检查了外侧 OFC 神经元的功能改变。

结论

我们提供了据我们所知,在 OCD 小鼠模型的外侧 OFC 中不同神经元类型的详细功能改变的首次直接活体电生理证据。这些发现有助于理解与 OCD 相关表型的潜在神经病理生理学和电路机制,并可能有助于产生和完善关于潜在生物标志物的假说,以进一步研究。

相似文献

1
Lateral orbitofrontal dysfunction in the Sapap3 knockout mouse model of obsessive–compulsive disorder.
J Psychiatry Neurosci. 2019 Mar 1;44(2):120-131. doi: 10.1503/jpn.180032.
3
Strengthened Inputs from Secondary Motor Cortex to Striatum in a Mouse Model of Compulsive Behavior.
J Neurosci. 2019 Apr 10;39(15):2965-2975. doi: 10.1523/JNEUROSCI.1728-18.2018. Epub 2019 Feb 8.
4
Monoamine abnormalities in the SAPAP3 knockout model of obsessive-compulsive disorder-related behaviour.
Philos Trans R Soc Lond B Biol Sci. 2018 Mar 19;373(1742). doi: 10.1098/rstb.2017.0023.
5
Circuit-selective striatal synaptic dysfunction in the Sapap3 knockout mouse model of obsessive-compulsive disorder.
Biol Psychiatry. 2014 Apr 15;75(8):623-30. doi: 10.1016/j.biopsych.2013.01.008. Epub 2013 Feb 13.
8
Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder.
Arch Gen Psychiatry. 2006 Nov;63(11):1225-36. doi: 10.1001/archpsyc.63.11.1225.
10
Instrumental learning in a mouse model for obsessive-compulsive disorder: Impaired habit formation in Sapap3 mutants.
Neurobiol Learn Mem. 2020 Feb;168:107162. doi: 10.1016/j.nlm.2020.107162. Epub 2020 Jan 9.

引用本文的文献

1
Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models.
Neurosci Bull. 2024 Dec;40(12):1975-1994. doi: 10.1007/s12264-024-01252-9. Epub 2024 Jul 9.
2
The genetics of trichotillomania and excoriation disorder: A systematic review.
Compr Psychiatry. 2024 Aug;133:152506. doi: 10.1016/j.comppsych.2024.152506. Epub 2024 May 31.
3
From compulsivity to compulsion: the neural basis of compulsive disorders.
Nat Rev Neurosci. 2024 May;25(5):313-333. doi: 10.1038/s41583-024-00807-z. Epub 2024 Apr 9.
4
Opening new vistas on obsessive-compulsive disorder with the observing response task.
Cogn Affect Behav Neurosci. 2024 Apr;24(2):249-265. doi: 10.3758/s13415-023-01153-w. Epub 2024 Feb 5.
5
Compulsive-like Behaviors in Amyloid-β 1-42-Induced Alzheimer's Disease in Mice Are Associated With Hippocampo-cortical Neural Circuit Dysfunction.
Biol Psychiatry Glob Open Sci. 2023 Mar 7;3(4):773-784. doi: 10.1016/j.bpsgos.2023.02.009. eCollection 2023 Oct.
6
7
SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders.
Cells. 2022 Nov 28;11(23):3815. doi: 10.3390/cells11233815.
9
Machine learning reveals interhemispheric somatosensory coherence as indicator of anesthetic depth.
Front Neuroinform. 2022 Sep 12;16:971231. doi: 10.3389/fninf.2022.971231. eCollection 2022.
10
Neuromodulation of OCD: A review of invasive and non-invasive methods.
Front Neurol. 2022 Aug 9;13:909264. doi: 10.3389/fneur.2022.909264. eCollection 2022.

本文引用的文献

1
Ketamine blocks bursting in the lateral habenula to rapidly relieve depression.
Nature. 2018 Feb 14;554(7692):317-322. doi: 10.1038/nature25509.
2
Distinct Subcortical Volume Alterations in Pediatric and Adult OCD: A Worldwide Meta- and Mega-Analysis.
Am J Psychiatry. 2017 Jan 1;174(1):60-69. doi: 10.1176/appi.ajp.2016.16020201. Epub 2016 Sep 9.
3
Striatal magnetic resonance spectroscopy abnormalities in young adult SAPAP3 knockout mice.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2016 Jan 1;1(1):39-48. doi: 10.1016/j.bpsc.2015.10.001.
4
Using mice to model Obsessive Compulsive Disorder: From genes to circuits.
Neuroscience. 2016 May 3;321:121-137. doi: 10.1016/j.neuroscience.2015.11.009. Epub 2015 Nov 10.
5
Learning From Animal Models of Obsessive-Compulsive Disorder.
Biol Psychiatry. 2016 Jan 1;79(1):7-16. doi: 10.1016/j.biopsych.2015.04.020. Epub 2015 May 4.
6
Striatal circuits, habits, and implications for obsessive-compulsive disorder.
Curr Opin Neurobiol. 2015 Feb;30:59-65. doi: 10.1016/j.conb.2014.08.008. Epub 2014 Sep 19.
7
Interneurons are necessary for coordinated activity during reversal learning in orbitofrontal cortex.
Biol Psychiatry. 2015 Mar 1;77(5):454-64. doi: 10.1016/j.biopsych.2014.07.023. Epub 2014 Aug 1.
9
P300 in obsessive-compulsive disorder: source localization and the effects of treatment.
J Psychiatr Res. 2013 Dec;47(12):1975-83. doi: 10.1016/j.jpsychires.2013.09.003. Epub 2013 Sep 15.
10
Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors.
Science. 2013 Jun 7;340(6137):1243-6. doi: 10.1126/science.1232380.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验