Suppr超能文献

2 型糖尿病的精准医学。

Precision medicine in type 2 diabetes.

机构信息

Genomics, Diabetes and Endocrinology, Department of Clinical Sciences, Clinical Research Centre, Lund University, Malmö, Sweden.

Finnish Institute of Molecular Medicine (FIMM), Helsinki University, Helsinki, Finland.

出版信息

J Intern Med. 2019 Jan;285(1):40-48. doi: 10.1111/joim.12859. Epub 2018 Dec 7.

Abstract

The Precision Medicine Initiative defines precision medicine as 'an emerging approach for disease treatment and prevention that takes into account individual variability in genes, environment and lifestyle for each person'. This approach will facilitate more accurate treatment and prevention strategies in contrast to a one-size-fits-all approach, in which disease treatment and prevention strategies are developed for generalized usage. Diabetes is clearly more heterogeneous than the conventional subclassification into type 1 and type 2 diabetes. Monogenic forms of diabetes like MODY and neonatal diabetes have paved the way for precision medicine in diabetes, as carriers of unique mutations require unique treatment. Diagnosis of diabetes in the past has been dependent upon measuring one metabolite, glucose. By instead including six variables in a clustering analysis, we could break down diabetes into five distinct subgroups, with better prediction of disease progression and outcome. The severe insulin-resistant diabetes (SIRD) cluster showed the highest risk of kidney disease and highest prevalence of nonalcoholic fatty liver disease, whereas patients in the insulin-deficient cluster 2 (SIDD) had the highest risk of retinopathy. In the future, this will certainly be improved and expanded by including genetic, epigenetic and other biomarker to allow better prediction of outcome and choice of more precise treatment.

摘要

精准医学倡议将精准医学定义为“一种新兴的疾病治疗和预防方法,考虑到每个人基因、环境和生活方式的个体差异”。与一刀切的方法相比,这种方法将促进更准确的治疗和预防策略,在一刀切的方法中,疾病的治疗和预防策略是为通用用途开发的。糖尿病显然比传统的 1 型和 2 型糖尿病的分类更为复杂。像 MODY 和新生儿糖尿病这样的单基因糖尿病为糖尿病的精准医学铺平了道路,因为携带独特突变的患者需要独特的治疗。过去,糖尿病的诊断依赖于测量一种代谢物,即葡萄糖。通过在聚类分析中加入六个变量,我们可以将糖尿病分为五个不同的亚组,更好地预测疾病的进展和结果。严重胰岛素抵抗性糖尿病 (SIRD) 亚组显示出最高的肾脏疾病风险和最高的非酒精性脂肪肝患病率,而胰岛素缺乏 2 型 (SIDD) 患者的视网膜病变风险最高。在未来,通过包括遗传、表观遗传和其他生物标志物,这肯定会得到改善和扩展,从而更好地预测结果,并选择更精确的治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验