Suppr超能文献

使用基于证据的机器学习方法对芬兰2型糖尿病患者药物治疗后长期糖化血红蛋白反应变化进行可解释预测。

Explainable Prediction of Long-Term Glycated Hemoglobin Response Change in Finnish Patients with Type 2 Diabetes Following Drug Initiation Using Evidence-Based Machine Learning Approaches.

作者信息

Chandra Gunjan, Lavikainen Piia, Siirtola Pekka, Tamminen Satu, Ihalapathirana Anusha, Laatikainen Tiina, Martikainen Janne, Röning Juha

机构信息

Biomimetics and Intelligent Systems Group, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland.

School of Pharmacy, University of Eastern Finland, Kuopio, Finland.

出版信息

Clin Epidemiol. 2025 Mar 8;17:225-240. doi: 10.2147/CLEP.S505966. eCollection 2025.

Abstract

PURPOSE

This study applied machine learning (ML) and explainable artificial intelligence (XAI) to predict changes in HbA1c levels, a critical biomarker for monitoring glycemic control, within 12 months of initiating a new antidiabetic drug in patients diagnosed with type 2 diabetes. It also aimed to identify the predictors associated with these changes.

PATIENTS AND METHODS

Electronic health records (EHR) from 10,139 type 2 diabetes patients in North Karelia, Finland, were used to train models integrating randomized controlled trial (RCT)-derived HbA1c change values as predictors, creating offset models that integrate RCT insights with real-world data. Various ML models-including linear regression (LR), multi-layer perceptron (MLP), ridge regression (RR), random forest (RF), and XGBoost (XGB)-were evaluated using and RMSE metrics. Baseline models used data at or before drug initiation, while follow-up models included the first post-drug HbA1c measurement, improving performance by incorporating dynamic patient data. Model performance was also compared to expected HbA1c changes from clinical trials.

RESULTS

Results showed that ML models outperform RCT model, while LR, MLP, and RR models had comparable performance, RF and XGB models exhibited overfitting. The follow-up MLP model outperformed the baseline MLP model, with higher scores (0.74, 0.65) and lower RMSE values (6.94, 7.62), compared to the baseline model (R²: 0.52, 0.54; RMSE: 9.27, 9.50). Key predictors of HbA1c change included baseline and post-drug initiation HbA1c values, fasting plasma glucose, and HDL cholesterol.

CONCLUSION

Using EHR and ML models allows for the development of more realistic and individualized predictions of HbA1c changes, accounting for more diverse patient populations and their heterogeneous nature, offering more tailored and effective treatment strategies for managing T2D. The use of XAI provided insights into the influence of specific predictors, enhancing model interpretability and clinical relevance. Future research will explore treatment selection models.

摘要

目的

本研究应用机器学习(ML)和可解释人工智能(XAI)来预测2型糖尿病患者在开始使用新的抗糖尿病药物后12个月内糖化血红蛋白(HbA1c)水平的变化,HbA1c是监测血糖控制的关键生物标志物。研究还旨在确定与这些变化相关的预测因素。

患者与方法

利用芬兰北卡累利阿地区10139例2型糖尿病患者的电子健康记录(EHR)来训练模型,将随机对照试验(RCT)得出的HbA1c变化值作为预测因素进行整合,创建将RCT见解与真实世界数据相结合的偏移模型。使用 和均方根误差(RMSE)指标对各种ML模型进行评估,包括线性回归(LR)、多层感知器(MLP)、岭回归(RR)、随机森林(RF)和极端梯度提升(XGB)。基线模型使用药物起始时或之前的数据,而随访模型包括首次药物治疗后的HbA1c测量值,通过纳入动态患者数据提高了性能。模型性能还与临床试验中预期的HbA1c变化进行了比较。

结果

结果显示,ML模型的表现优于RCT模型,而LR、MLP和RR模型性能相当,RF和XGB模型出现过拟合。随访的MLP模型优于基线MLP模型,与基线模型(R²:0.52,0.54;RMSE:9.27,9.50)相比,得分更高(0.74,0.65),RMSE值更低(6.94,7.62)。HbA1c变化的关键预测因素包括基线和药物起始后的HbA1c值、空腹血糖和高密度脂蛋白胆固醇。

结论

使用EHR和ML模型能够对HbA1c变化进行更现实、个性化的预测,考虑到更多样化的患者群体及其异质性,为管理2型糖尿病提供更具针对性和有效的治疗策略。XAI的使用提供了对特定预测因素影响的见解,增强了模型的可解释性和临床相关性。未来的研究将探索治疗选择模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d6/11899941/a049145c704f/CLEP-17-225-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验