Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States.
J Am Chem Soc. 2018 Dec 5;140(48):16792-16806. doi: 10.1021/jacs.8b10181. Epub 2018 Nov 21.
Chemical oxidation and reduction of the all-ferrous (L)Fe in THF affords isostructural, coordinatively unsaturated clusters of the type [(L)Fe] : [(L)Fe][BArF] (1, n = +1; where [BArF] = tetrakis[(3,5-trifluoromethyl)phenyl]borate), [BuN][(L)Fe] (2a, n = -1), [P][(L)Fe] (2b, n = -1; where [P] = tributyl(1,3-dioxolan-2-ylmethyl)phosphonium), and [BuN][(L)Fe] (3, n = -2). Each member of the redox-transfer series was characterized by zero-field Fe Mössbauer spectroscopy, near-infrared spectroscopy, single-crystal X-ray crystallography, and magnetometry. Redox-directed trends are observed when comparing the structural metrics within the [Fe] core. The metal octahedron [Fe] decreases marginally in volume as the molecular reduction state increases as gauged by the Fe-Fe distance varying from 2.608(11) Å ( n = +1) to 2.573(3) ( n = -2). In contrast, the mean Fe-N distances and ∠Fe-N-Fe angles correlate linearly with the [Fe] oxidation level, or alternatively, the changes observed within the local Fe-N coordination planes vary linearly with the aggregate spin ground state. In general, as the spin ground state ( S) increases, the Fe-N(H) distances also increase. The structural metric perturbations within the [Fe] core and measured spin ground states were rationalized extending the previously proposed molecular orbital diagram derived for (L)Fe. Chemical reduction of the (L)Fe cluster results in an abrupt increase in spin ground state from S = 6 for the all-ferrous cluster, to S = / in the monoanionic 2b and S = 11 for the dianionic 3. The observation of asymmetric intervalence charge transfer bands in 3 provides further evidence of the fully delocalized ground state observed by Fe Mössbauer spectroscopy for all species examined (1-3). For each of the clusters examined within the electron-transfer series, the observed spin ground states thermally persist to 300 K. In particular, the S = 11 in dianionic 3 and S = / in the monoanionic 2b represent the highest spin ground states isolated up to room temperature known to date. The increase in spin ground state results from population of the antibonding orbital band comprised of the Fe-N σ* interactions. As such, the thermally persistent ground states arise from population of the resultant single spin manifolds in accordance with Hund's rules. The large spin ground states, indicative of strong ferromagnetic electronic alignment of the valence electrons, result from strong direct exchange electronic coupling mediated by Fe-Fe orbital overlap within the [Fe] cores, equivalent to a strong double exchange magnetic coupling B for 3 that was calculated to be 309 cm.
在四氢呋喃中,全铁(L)Fe 的化学氧化和还原得到结构相同、配位不饱和的簇合物,类型为[(L)Fe]:[(L)Fe][BArF](1,n=+1;其中[BArF]=四[(3,5-三氟甲基)苯基]硼酸根)、[BuN][(L)Fe](2a,n=-1)、[P][(L)Fe](2b,n=-1;其中[P]=三丁基(1,3-二氧戊环-2-基甲基)膦)和[BuN][(L)Fe](3,n=-2)。氧化还原转移系列的每个成员都通过零场 Fe Mössbauer 光谱、近红外光谱、单晶 X 射线晶体学和磁测量进行了表征。在比较[Fe]核内的结构度量时,可以观察到氧化还原导向的趋势。金属八面体[Fe]的体积略有减小,因为分子还原态增加,这可以通过 Fe-Fe 距离从 2.608(11)Å(n=+1)到 2.573(3)(n=-2)来衡量。相比之下,平均 Fe-N 距离和∠Fe-N-Fe 角度与[Fe]氧化态呈线性相关,或者换句话说,在局部 Fe-N 配位平面内观察到的变化与聚合自旋基态呈线性相关。一般来说,随着自旋基态(S)的增加,Fe-N(H)距离也会增加。通过扩展之前为(L)Fe 提出的分子轨道图,可以合理地解释[Fe]核内的结构度量和测量的自旋基态。(L)Fe 簇合物的化学还原导致自旋基态从全铁簇的 S=6 急剧增加到单阴离子 2b 的 S=/和二阴离子 3 的 S=11。在 3 中观察到不对称的价间电荷转移带进一步证明了通过 Fe Mössbauer 光谱观察到的所有研究物种(1-3)的完全离域基态。在所研究的电子转移系列中的每个簇合物中,观察到的自旋基态在 300 K 时仍然存在。特别是,二阴离子 3 中的 S=11 和单阴离子 2b 中的 S=/代表了迄今为止在室温下分离出的最高自旋基态。自旋基态的增加是由于填充由 Fe-Nσ*相互作用组成的反键轨道带。因此,根据 Hund 规则,热稳定的基态是由填充结果单自旋磁子引起的。大的自旋基态表明价电子的强铁磁电子排列,这是由于[Fe]核内的 Fe-Fe 轨道重叠介导的强直接交换电子耦合引起的,相当于计算出的 3 中的强双交换磁耦合 B 为 309 cm。