Hernández Sánchez Raúl, Zheng Shao-Liang, Betley Theodore A
Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States.
J Am Chem Soc. 2015 Sep 2;137(34):11126-43. doi: 10.1021/jacs.5b06453. Epub 2015 Aug 21.
To assess the impact of terminal ligand binding on a variety of cluster properties (redox delocalization, ground-state stabilization, and breadth of redox state accessibility), we prepared three electron-transfer series based on the hexanuclear iron cluster ((H)L)2Fe6(L')m in which the terminal ligand field strength was modulated from weak to strong (L' = DMF, MeCN, CN). The extent of intracore M-M interactions is gauged by M-M distances, spin ground state persistence, and preference for mixed-valence states as determined by electrochemical comproportionation constants. Coordination of DMF to the [((H)L)2Fe6] core leads to weaker Fe-Fe interactions, as manifested by the observation of ground states populated only at lower temperatures (<100 K) and by the greater evidence of valence trapping within the mixed-valence states. Comproportionation constants determined electrochemically (Kc = 10(4)-10(8)) indicate that the redox series exhibits electronic delocalization (class II-III), yet no intervalence charge transfer (IVCT) bands are observable in the near-IR spectra. Ligation of the stronger σ donor acetonitrile results in stabilization of spin ground states to higher temperatures (∼300 K) and a high degree of valence delocalization (Kc = 10(2)-10(8)) with observable IVCT bands. Finally, the anionic cyanide-bound series reveals the highest degree of valence delocalization with the most intense IVCT bands (Kc = 10(12)-10(20)) and spin ground state population beyond room temperature. Across the series, at a given formal oxidation level, the capping ligand on the hexairon cluster dictates the overall properties of the aggregate, modulating the redox delocalization and the persistence of the intracore coupling of the metal sites.
为了评估末端配体结合对多种簇合物性质(氧化还原离域、基态稳定性和氧化还原态可及性广度)的影响,我们基于六核铁簇((H)L)2Fe6(L')m制备了三个电子转移系列,其中末端配体场强从弱到强进行调制(L' = DMF、MeCN、CN)。核内M-M相互作用的程度通过M-M距离、自旋基态持久性以及由电化学歧化常数确定的对混合价态的偏好来衡量。DMF与[((H)L)2Fe6]核的配位导致较弱的Fe-Fe相互作用,这表现为仅在较低温度(<100 K)下出现基态,以及混合价态内价态捕获的更多证据。电化学测定的歧化常数(Kc = 10(4)-10(8))表明,该氧化还原系列表现出电子离域(II-III类),但在近红外光谱中未观察到价间电荷转移(IVCT)带。较强的σ供体乙腈的配位导致自旋基态在更高温度(~300 K)下稳定,并且具有可观察到的IVCT带的高度价离域(Kc = 10(2)-10(8))。最后,阴离子氰化物结合系列显示出最高程度的价离域,具有最强的IVCT带(Kc = 10(12)-10(20)),并且自旋基态在室温以上仍存在。在整个系列中,在给定的形式氧化水平下,六铁簇上的封端配体决定了聚集体的整体性质,调节了氧化还原离域和金属位点核内耦合的持久性。