文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

涂覆有聚合物稳定剂的氢化可的松纳米晶体的微流体制备

Microfluidic Fabrication of Hydrocortisone Nanocrystals Coated with Polymeric Stabilisers.

作者信息

Odetade David F, Vladisavljevic Goran T

机构信息

Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, UK.

出版信息

Micromachines (Basel). 2016 Dec 18;7(12):236. doi: 10.3390/mi7120236.


DOI:10.3390/mi7120236
PMID:30404408
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6190127/
Abstract

Hydrocortisone (HC) nanocrystals intended for parenteral administration of HC were produced by anti-solvent crystallisation within coaxial assemblies of pulled borosilicate glass capillaries using either co-current flow of aqueous and organic phases or counter-current flow focusing. The organic phase was composed of 7 mg/mL of HC in a 60:40 (/) mixture of ethanol and water and the anti-solvent was milli-Q water. The microfluidic mixers were fabricated with an orifice diameter of the inner capillary ranging from 50 µm to 400 µm and operated at the aqueous to organic phase flow rate ratio ranging from 5 to 25. The size of the nanocrystals decreased with increasing aqueous to organic flow rate ratio. The counter-current flow microfluidic mixers provided smaller nanocrystals than the co-current flow devices under the same conditions and for the same geometry, due to smaller diameter of the organic phase stream in the mixing zone. The Z-average particle size of the drug nanocrystals increased from 210⁻280 nm to 320⁻400 nm after coating the nanocrystals with 0.2 wt % aqueous solution of hydroxypropyl methylcellulose (HPMC) in a stirred vial. The differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD) analyses carried out on the dried nanocrystals stabilized with HPMC, polyvinyl pyrrolidone (PVP), and sodium lauryl sulfate (SLS) were investigated and reported. The degree of crystallinity for the processed sample was lowest for the sample stabilised with HPMC and the highest for the raw HC powder.

摘要

用于氢化可的松肠胃外给药的氢化可的松(HC)纳米晶体,是通过在拉制的硼硅酸盐玻璃毛细管的同轴组件内进行抗溶剂结晶来制备的,使用水相和有机相并流或逆流聚焦。有机相由7 mg/mL的HC溶解在乙醇和水的60:40(/)混合物中组成,抗溶剂为超纯水。微流混合器的内毛细管孔直径为50 µm至400 µm,水相和有机相流速比为5至25时运行。纳米晶体的尺寸随着水相和有机相流速比的增加而减小。在相同条件和相同几何形状下,逆流微流混合器比并流装置产生的纳米晶体更小,这是因为混合区中有机相流的直径更小。在用0.2 wt%羟丙基甲基纤维素(HPMC)水溶液在搅拌瓶中包覆纳米晶体后,药物纳米晶体的Z平均粒径从210⁻280 nm增加到320⁻400 nm。对用HPMC、聚乙烯吡咯烷酮(PVP)和十二烷基硫酸钠(SLS)稳定的干燥纳米晶体进行了差示扫描量热法(DSC)和X射线粉末衍射(XRPD)分析并进行了报道。用HPMC稳定的样品的加工样品结晶度最低,而原始HC粉末的结晶度最高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/4b065dd352f6/micromachines-07-00236-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/e91e568dadb8/micromachines-07-00236-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/968fa19b3695/micromachines-07-00236-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/d977bd081fa4/micromachines-07-00236-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/83d907b69b9e/micromachines-07-00236-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/822d8f4c8220/micromachines-07-00236-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/67541fe81015/micromachines-07-00236-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/6629f3f2cfe0/micromachines-07-00236-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/af930093c9cc/micromachines-07-00236-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/35281e4535b9/micromachines-07-00236-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/9598065512d7/micromachines-07-00236-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/4b065dd352f6/micromachines-07-00236-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/e91e568dadb8/micromachines-07-00236-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/968fa19b3695/micromachines-07-00236-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/d977bd081fa4/micromachines-07-00236-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/83d907b69b9e/micromachines-07-00236-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/822d8f4c8220/micromachines-07-00236-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/67541fe81015/micromachines-07-00236-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/6629f3f2cfe0/micromachines-07-00236-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/af930093c9cc/micromachines-07-00236-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/35281e4535b9/micromachines-07-00236-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/9598065512d7/micromachines-07-00236-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d779/6190127/4b065dd352f6/micromachines-07-00236-g011.jpg

相似文献

[1]
Microfluidic Fabrication of Hydrocortisone Nanocrystals Coated with Polymeric Stabilisers.

Micromachines (Basel). 2016-12-18

[2]
Dexibuprofen nanocrystals with improved therapeutic performance: fabrication, characterization, in silico modeling, and in vivo evaluation.

Int J Nanomedicine. 2018-3-20

[3]
Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices.

ACS Appl Mater Interfaces. 2015-10-12

[4]
Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.

Colloids Surf B Biointerfaces. 2016-5-1

[5]
Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability.

Drug Deliv Transl Res. 2016-10

[6]
Biodegradable Polymers-Based Smart Nanocrystals for Loxoprofen Delivery with Enhanced Solubility: Design, Fabrication and Physical Characterizations.

Polymers (Basel). 2022-8-25

[7]
Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology.

Int J Pharm. 2011-11-22

[8]
Solid state and dissolution rate characterization of co-ground mixtures of nifedipine and hydrophilic carriers.

Drug Dev Ind Pharm. 2005-9

[9]
Enhancing the Solubility of Fenofibrate by Nanocrystal Formation and Encapsulation.

AAPS PharmSciTech. 2017-7-12

[10]
Continuous and scalable process for water-redispersible nanoformulation of poorly aqueous soluble APIs by antisolvent precipitation and spray-drying.

Int J Pharm. 2010-11-5

引用本文的文献

[1]
Facile production of quercetin nanoparticles using 3D printed centrifugal flow reactors.

RSC Adv. 2022-7-19

[2]
Drug Nanocrystals: Focus on Brain Delivery from Therapeutic to Diagnostic Applications.

Pharmaceutics. 2022-3-23

本文引用的文献

[1]
Production of Fluconazole-Loaded Polymeric Micelles Using Membrane and Microfluidic Dispersion Devices.

Membranes (Basel). 2016-5-25

[2]
Injected nanocrystals for targeted drug delivery.

Acta Pharm Sin B. 2016-3

[3]
Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.

Colloids Surf B Biointerfaces. 2016-5-1

[4]
Recent advances in the engineering of nanosized active pharmaceutical ingredients: Promises and challenges.

Adv Colloid Interface Sci. 2016-2

[5]
Smart polymers for the controlled delivery of drugs - a concise overview.

Acta Pharm Sin B. 2014-4

[6]
Effect of HPMC and mannitol on drug release and bioadhesion behavior of buccal discs of buspirone hydrochloride: In-vitro and in-vivo pharmacokinetic studies.

Saudi Pharm J. 2015-7

[7]
Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics.

Lab Chip. 2013-8-15

[8]
pH-sensitive micelles for targeted drug delivery prepared using a novel membrane contactor method.

ACS Appl Mater Interfaces. 2013-9-3

[9]
Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size.

Int J Pharm. 2013-1-18

[10]
How to avoid precipitating an acute adrenal crisis.

BMJ. 2012-10-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索