Suppr超能文献

NOXA 基因扩增或药物诱导使淋巴瘤细胞对 BCL2 抑制剂诱导的细胞死亡敏感。

NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death.

机构信息

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065.

Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065.

出版信息

Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):12034-12039. doi: 10.1073/pnas.1806928115. Epub 2018 Nov 7.

Abstract

Although diffuse large B cell lymphoma (DLBCL) cells widely express the BCL2 protein, they rarely respond to treatment with BCL2-selective inhibitors. Here we show that DLBCL cells harboring PMAIP1/NOXA gene amplification were highly sensitive to BCL2 small-molecule inhibitors. In these cells, BCL2 inhibition induced cell death by activating caspase 9, which was further amplified by caspase-dependent cleavage and depletion of MCL1. In DLBCL cells lacking NOXA amplification, BCL2 inhibition was associated with an increase in MCL1 protein abundance in a BIM-dependent manner, causing a decreased antilymphoma efficacy. In these cells, dual inhibition of MCL1 and BCL2 was required for enhanced killing. Pharmacologic induction of NOXA, using the histone deacetylase inhibitor panobinostat, decreased MCL1 protein abundance and increased lymphoma cell vulnerability to BCL2 inhibitors in vitro and in vivo. Our data provide a mechanistic rationale for combination strategies to disrupt lymphoma cell codependency on BCL2 and MCL1 proteins in DLBCL.

摘要

尽管弥漫性大 B 细胞淋巴瘤 (DLBCL) 细胞广泛表达 BCL2 蛋白,但它们很少对 BCL2 选择性抑制剂的治疗产生反应。在这里,我们表明,携带 PMAIP1/NOXA 基因扩增的 DLBCL 细胞对 BCL2 小分子抑制剂高度敏感。在这些细胞中,BCL2 抑制通过激活 caspase 9 诱导细胞死亡,caspase 依赖性切割和耗尽 MCL1 进一步放大了这种作用。在缺乏 NOXA 扩增的 DLBCL 细胞中,BCL2 抑制与 BIM 依赖性的 MCL1 蛋白丰度增加有关,导致抗淋巴瘤疗效降低。在这些细胞中,需要同时抑制 MCL1 和 BCL2 才能增强杀伤效果。使用组蛋白去乙酰化酶抑制剂帕比司他在体外和体内诱导 NOXA 的产生,降低了 MCL1 蛋白丰度,并增加了淋巴瘤细胞对 BCL2 抑制剂的敏感性。我们的数据为联合策略提供了一种机制基础,以破坏 DLBCL 中淋巴瘤细胞对 BCL2 和 MCL1 蛋白的依赖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e783/6255185/00bb4905046b/pnas.1806928115fig01.jpg

相似文献

1
NOXA genetic amplification or pharmacologic induction primes lymphoma cells to BCL2 inhibitor-induced cell death.
Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):12034-12039. doi: 10.1073/pnas.1806928115. Epub 2018 Nov 7.
3
5
PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo.
Clin Cancer Res. 2014 Sep 15;20(18):4849-60. doi: 10.1158/1078-0432.CCR-14-0034. Epub 2014 Jul 28.
8
Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma.
Oncotarget. 2016 Jan 19;7(3):3520-32. doi: 10.18632/oncotarget.6513.
10
Diffuse Large B Cell Lymphoma Cell Line U-2946: Model for MCL1 Inhibitor Testing.
PLoS One. 2016 Dec 1;11(12):e0167599. doi: 10.1371/journal.pone.0167599. eCollection 2016.

引用本文的文献

3
Targeting regulated cell death pathways in cancers for effective treatment: a comprehensive review.
Front Cell Dev Biol. 2024 Nov 15;12:1462339. doi: 10.3389/fcell.2024.1462339. eCollection 2024.
4
Silencing GNAS enhances HDAC3i efficacy in CREBBP wild type B cell lymphoma.
Leukemia. 2024 Oct;38(10):2087-2089. doi: 10.1038/s41375-024-02355-y. Epub 2024 Jul 19.
5
Quantitative systems pharmacology modeling of tumor heterogeneity in response to BH3-mimetics using virtual tumors calibrated with cell viability assays.
CPT Pharmacometrics Syst Pharmacol. 2024 Jul;13(7):1252-1263. doi: 10.1002/psp4.13158. Epub 2024 May 15.
6
PMAIP1 promotes J subgroup avian leukosis virus replication by regulating mitochondrial function.
Poult Sci. 2024 Jun;103(6):103617. doi: 10.1016/j.psj.2024.103617. Epub 2024 Mar 6.
8
Molecular classification and therapeutics in diffuse large B-cell lymphoma.
Front Mol Biosci. 2023 Feb 3;10:1124360. doi: 10.3389/fmolb.2023.1124360. eCollection 2023.
10
The Pt(-pr-thiosal)2 and BCL1 Leukemia Lymphoma: Antitumor Activity In Vitro and In Vivo.
Int J Mol Sci. 2022 Jul 24;23(15):8161. doi: 10.3390/ijms23158161.

本文引用的文献

1
S55746 is a novel orally active BCL-2 selective and potent inhibitor that impairs hematological tumor growth.
Oncotarget. 2018 Apr 13;9(28):20075-20088. doi: 10.18632/oncotarget.24744.
3
BCL2 expression in DLBCL: reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation.
Blood. 2017 Jul 27;130(4):489-500. doi: 10.1182/blood-2016-12-759621. Epub 2017 May 18.
4
5
From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors.
Nat Rev Drug Discov. 2017 Apr;16(4):273-284. doi: 10.1038/nrd.2016.253. Epub 2017 Feb 17.
6
Phase I First-in-Human Study of Venetoclax in Patients With Relapsed or Refractory Non-Hodgkin Lymphoma.
J Clin Oncol. 2017 Mar 10;35(8):826-833. doi: 10.1200/JCO.2016.70.4320. Epub 2017 Jan 17.
7
BCL2 Inhibitors as Anticancer Drugs: A Plethora of Misleading BH3 Mimetics.
Mol Cancer Ther. 2016 Sep;15(9):2011-7. doi: 10.1158/1535-7163.MCT-16-0031. Epub 2016 Aug 17.
8
A BH3 Mimetic for Killing Cancer Cells.
Cell. 2016 Jun 16;165(7):1560. doi: 10.1016/j.cell.2016.05.080.
9
The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism.
Blood. 2016 Jun 23;127(25):3215-24. doi: 10.1182/blood-2016-01-688796. Epub 2016 Apr 11.
10
Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia.
N Engl J Med. 2016 Jan 28;374(4):311-22. doi: 10.1056/NEJMoa1513257. Epub 2015 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验