Heers Ashley M, Rankin Jeffery W, Hutchinson John R
Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, United States.
Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, United Kingdom.
Front Bioeng Biotechnol. 2018 Oct 23;6:140. doi: 10.3389/fbioe.2018.00140. eCollection 2018.
Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring "flight adaptations," recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs.
扑翼飞行是最消耗能量的运动方式,与现存成年鸟类的一系列解剖学特化相关。相比之下,许多发育中的鸟类在获得“飞行适应性”之前很久就利用前肢来应对环境,利用它们发育中的翅膀不断增强腿部性能,在某些情况下还能飞行。解剖学发育如何影响这些运动行为?使用纯粹的经验方法来分离形态对翅膀性能的贡献极具挑战性。然而,肌肉骨骼建模和模拟技术可以纳入经验数据,通过单独操纵解剖学参数并估计它们对运动的影响,来明确检查形态变化的功能后果。为了评估解剖学上的个体发育变化如何影响运动能力,我们将现有的关于肌肉形态、骨骼运动学和空气动力产生的经验数据与先进的生物力学建模和模拟技术相结合,以分析一种早成地栖鸟类胸肢功能的个体发育。使用这些新开发的肌肉骨骼模型对翼助斜坡跑(WAIR)进行的模拟共同表明,幼鸟具有过剩的肌肉能力,并且更多地受到羽毛形态的限制,这可能是因为羽毛生长更快,并且生长方式与骨骼和肌肉不同。这些结果通过以下方式提供了有关鸟类运动个体发育和进化的关键信息:(i)确定肌肉和空气动力如何与骨骼系统相互作用,以在形态变化的幼鸟中产生运动;(ii)提供一个基准,为现存物种和已灭绝兽脚亚目恐龙的其他运动行为的生物力学建模和模拟提供参考。
Front Bioeng Biotechnol. 2018-10-23
Integr Comp Biol. 2017-8-1
J Exp Biol. 2007-5
Science. 2003-1-17
Integr Comp Biol. 2016-9
J Exp Biol. 2003-12
Front Bioeng Biotechnol. 2022-3-16
Br Foreign Med Chir Rev. 1860-4
Integr Comp Biol. 2017-8-1