文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

构建一只鸟:鸟类个体发育过程中翼辅助斜向奔跑的肌肉骨骼建模与模拟

Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny.

作者信息

Heers Ashley M, Rankin Jeffery W, Hutchinson John R

机构信息

Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, United States.

Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, United Kingdom.

出版信息

Front Bioeng Biotechnol. 2018 Oct 23;6:140. doi: 10.3389/fbioe.2018.00140. eCollection 2018.


DOI:10.3389/fbioe.2018.00140
PMID:30406089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6205952/
Abstract

Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring "flight adaptations," recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs.

摘要

扑翼飞行是最消耗能量的运动方式,与现存成年鸟类的一系列解剖学特化相关。相比之下,许多发育中的鸟类在获得“飞行适应性”之前很久就利用前肢来应对环境,利用它们发育中的翅膀不断增强腿部性能,在某些情况下还能飞行。解剖学发育如何影响这些运动行为?使用纯粹的经验方法来分离形态对翅膀性能的贡献极具挑战性。然而,肌肉骨骼建模和模拟技术可以纳入经验数据,通过单独操纵解剖学参数并估计它们对运动的影响,来明确检查形态变化的功能后果。为了评估解剖学上的个体发育变化如何影响运动能力,我们将现有的关于肌肉形态、骨骼运动学和空气动力产生的经验数据与先进的生物力学建模和模拟技术相结合,以分析一种早成地栖鸟类胸肢功能的个体发育。使用这些新开发的肌肉骨骼模型对翼助斜坡跑(WAIR)进行的模拟共同表明,幼鸟具有过剩的肌肉能力,并且更多地受到羽毛形态的限制,这可能是因为羽毛生长更快,并且生长方式与骨骼和肌肉不同。这些结果通过以下方式提供了有关鸟类运动个体发育和进化的关键信息:(i)确定肌肉和空气动力如何与骨骼系统相互作用,以在形态变化的幼鸟中产生运动;(ii)提供一个基准,为现存物种和已灭绝兽脚亚目恐龙的其他运动行为的生物力学建模和模拟提供参考。

相似文献

[1]
Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny.

Front Bioeng Biotechnol. 2018-10-23

[2]
Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

PLoS One. 2016-4-21

[3]
Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar).

Integr Comp Biol. 2017-8-1

[4]
Aerodynamics of wing-assisted incline running in birds.

J Exp Biol. 2007-5

[5]
Wing-assisted incline running and the evolution of flight.

Science. 2003-1-17

[6]
Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment.

Proc Biol Sci. 2009-10-7

[7]
New Perspectives on the Ontogeny and Evolution of Avian Locomotion.

Integr Comp Biol. 2016-9

[8]
The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.

PeerJ. 2016-7-7

[9]
The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications.

J Exp Biol. 2011-7-15

[10]
Mechanics of wing-assisted incline running (WAIR).

J Exp Biol. 2003-12

引用本文的文献

[1]
Morphlight theory inspired by raptors: musculoskeletal modeling and muscle control in Falco peregrinus wing flapping.

Biol Open. 2025-4-15

[2]
Estimation of the forces exerted on the limb long bones of a white rhinoceros (Ceratotherium simum) using musculoskeletal modelling and simulation.

J Anat. 2024-8

[3]
Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion.

Sci Rep. 2023-2-25

[4]
Modern three-dimensional digital methods for studying locomotor biomechanics in tetrapods.

J Exp Biol. 2023-4-25

[5]
Kinematics and Aerodynamics of Dragonflies (, Libellulidae) in Climbing Flight.

Front Bioeng Biotechnol. 2022-3-16

[6]
A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs.

J Anat. 2022-7

[7]
Exploring the functional morphology of the Gorilla shoulder through musculoskeletal modelling.

J Anat. 2021-7

本文引用的文献

[1]
On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life.

Br Foreign Med Chir Rev. 1860-4

[2]
The functional anatomy of the shoulder in the European starling (Sturnus vulgaris).

J Morphol. 1991-3

[3]
Forelimb muscle and joint actions in Archosauria: insights from (Pseudosuchia) and (Sauropodomorpha).

PeerJ. 2017-11-24

[4]
Investigating the running abilities of using stress-constrained multibody dynamic analysis.

PeerJ. 2017-7-18

[5]
Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar).

Integr Comp Biol. 2017-8-1

[6]
The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents.

PeerJ. 2016-7-7

[7]
Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model.

J Anat. 2016-10

[8]
Inferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization.

J R Soc Interface. 2016-5

[9]
Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

PLoS One. 2016-4-21

[10]
Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion.

PeerJ. 2015-6-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索