Suppr超能文献

鸵鸟(鸵鸟属骆驼鸵鸟)骨盆肢的肌肉骨骼建模:肢体方向对运动过程中肌肉能力的影响。

Musculoskeletal modelling of an ostrich (Struthio camelus) pelvic limb: influence of limb orientation on muscular capacity during locomotion.

作者信息

Hutchinson John R, Rankin Jeffery W, Rubenson Jonas, Rosenbluth Kate H, Siston Robert A, Delp Scott L

机构信息

Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London , Hatfield, Hertfordshire , United Kingdom ; Bioengineering Department, Stanford University , Stanford, CA , USA.

Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London , Hatfield, Hertfordshire , United Kingdom.

出版信息

PeerJ. 2015 Jun 11;3:e1001. doi: 10.7717/peerj.1001. eCollection 2015.

Abstract

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model's results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.

摘要

我们构建了一个鸵鸟(鸵鸟属骆驼鸵鸟)36个主要盆肢肌肉群的三维生物力学计算机模型,以研究这种现存最大鸟类以及许多运动力学、体型、解剖学和进化研究的模式生物的肌肉功能。结合实验数据,我们使用该模型来检验两个主要假设。我们首先探究鸵鸟在行走或奔跑时是否采用能优化其肌肉力矩产生能力的肢体方位(关节角度)。接下来,我们测试鸵鸟在 stance 中期是否采用能使伸肌力矩臂接近最大、屈肌力矩臂接近最小的肢体方位。我们的两个假设涉及大型双足动物在生物力学约束下可能进化出的控制优先级,以实现更有效的静态体重支撑。我们发现鸵鸟不会利用肢体方位来优化其肌肉的力矩产生能力或力矩臂。我们推断肌肉或肌腱的动态特性可能是运动优化的更好候选因素。无论如何,目前缺乏解释物种在运动过程中为何选择特定关节方位的一般原则,这就引发了这样一个问题:是否存在这样的一般原则,或者不同的类群是否进化出不同的模式(例如,在选择姿势时肌肉力 - 长度或力 - 速度特性的权重)。这使得对已灭绝动物肌肉力矩臂的理论研究陷入僵局,直到对现存分类群的研究回答这些问题。最后,我们将我们模型的结果与之前两项关于鸵鸟肢体肌肉力矩臂的研究结果进行比较,发现许多肌肉的结果总体一致。一些屈肌和伸肌表现出自我稳定模式(屈肌/伸肌作用之间的姿势依赖性转换),鸵鸟可能利用这些模式来协调其运动。然而,我们结果中一些明显的不一致之处说明了一些警示原则。重要的是,肌肉力矩臂的肌腱行程实证测量必须精心设计,以保留三维肌肉几何形状,以免其准确性相对于解剖学上逼真的模型受到影响。鸟类肌肉三维力矩臂的准确实验测量的匮乏使得不同建模或实验数据集(如鸵鸟的数据集)的相对准确性存在不确定性。然而,我们的模型首次提供了一套全面的鸵鸟肌肉作用的三维估计,强调鸟类肢体力学是高度三维且复杂的,以及没有肌肉纯粹在矢状面内起作用。像我们这样的实验和模型的比较综合可以为运动过程中解剖学、力学和控制如何相互作用以及这些相互作用如何进化提供有力的综合。这样一个框架可以消除阻碍对已灭绝分类群肌肉功能分析的障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e37/4465956/5aa276657e0a/peerj-03-1001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验