Suppr超能文献

基因共表达网络揭示了与RUT-30中甘蔗渣降解相关的潜在新基因。

Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in RUT-30.

作者信息

Borin Gustavo Pagotto, Carazzolle Marcelo Falsarella, Dos Santos Renato Augusto Corrêa, Riaño-Pachón Diego Mauricio, Oliveira Juliana Velasco de Castro

机构信息

Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.

Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil.

出版信息

Front Bioeng Biotechnol. 2018 Oct 22;6:151. doi: 10.3389/fbioe.2018.00151. eCollection 2018.

Abstract

The biomass-degrading fungus has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of , the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of strains and to decrease the production costs of 2G ethanol.

摘要

生物质降解真菌被认为是纤维素降解的模型,并且是第二代(2G)乙醇生产中使用的工业酶混合物的主要来源。然而,尽管已经进行了各种研究并取得了进展来了解纤维素分解系统及其转录调控,但与木质纤维素降解相关的全套基因尚未完全阐明。在本研究中,我们基于RUT-C30菌株的转录组数据集推断了加权基因共表达网络分析,旨在鉴定参与甘蔗渣分解的新靶基因。总共,在28个高度连接的基因模块中发现了所有差异表达基因的约70%。几种在甘蔗渣中上调的纤维素酶、糖转运蛋白和假定蛋白质编码基因被归为同一模块。其中,一个单一模块包含了最具代表性的纤维素分解酶核心(纤维二糖水解酶、内切葡聚糖酶、β-葡萄糖苷酶和裂解多糖单加氧酶)。此外,使用基因本体论(GO)的功能分析揭示了这些模块中富集的各种水解活性、纤维素酶活性、碳水化合物结合和阳离子:糖同向转运蛋白活性类别。几个模块还显示出转录因子活性的GO富集,表明存在转录调节因子以及参与纤维素分解和糖转运的基因以及其他编码功能未知蛋白质的基因。在每个模块中也鉴定出了高度连接的基因(枢纽基因),例如预测的转录因子和编码假定蛋白质的基因。此外,根据我们的分析,各种枢纽基因至少包含一个主激活因子Xyr1的DNA结合位点。Xyr1结合位点的预测以及与编码碳水化合物活性酶和糖转运蛋白的基因的共表达表明这些枢纽基因在甘蔗渣细胞壁解构中具有假定作用。我们的结果证明了大量有前景的新靶标,值得进一步研究以提高菌株的纤维素分解潜力并降低2G乙醇的生产成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验