Suppr超能文献

基于巨正则势动力学的MoS基面硫空位处析氢反应的反应机理

Reaction Mechanism for the Hydrogen Evolution Reaction on the Basal Plane Sulfur Vacancy Site of MoS Using Grand Canonical Potential Kinetics.

作者信息

Huang Yufeng, Nielsen Robert J, Goddard William A

机构信息

Materials and Process Simulation Center and Joint Center for Artificial Photosynthesis , California Institute of Technology , Pasadena , California 91125 , United States.

出版信息

J Am Chem Soc. 2018 Dec 5;140(48):16773-16782. doi: 10.1021/jacs.8b10016. Epub 2018 Nov 21.

Abstract

We develop the grand canonical potential kinetics (GCP-K) formulation based on thermodynamics from quantum mechanics calculations to provide a fundamental basis for understanding heterogeneous electrochemical reactions. Our GCP-K formulation arises naturally from minimizing the free energy using a Legendre transform relating the net charge of the system and the applied voltage. Performing this macroscopic transformation explicitly allows us to make the connection of GCP-K to the traditional Butler-Volmer kinetics. Using this GCP-K based free energy, we show how to predict both the potential and pH dependent chemistry for a specific example, the hydrogen evolution reaction (HER) at a sulfur vacancy on the basal plane of MoS. We find that the rate-determining steps in both acidic and basic conditions are the Volmer reaction in which the second hydrogen atom is adsorbed from the solution. Using the GCP-K formulation, we show that the stretched bond distances change continuously as a function of the applied potential. This shows that the main reason for the higher activity in basic conditions is that the transition state is closer to the product, which leads to a more favorable Tafel slope of 60 mV/dec. In contrast if the transition state were closer to the reactant, where the transfer coefficient is less than 0.5 we would obtain a Tafel slope of almost 150 mV/dec. Based on this detailed understanding of the reaction mechanism, we conclude that the second hydrogen at the chalcogenide vacant site is the most active toward the hydrogen evolution reaction. Using this as a descriptor, we compare it to the other 2H group VI metal dichalcogenides and predict that vacancies on MoTe will have the best performance toward HER.

摘要

我们基于量子力学计算的热力学原理开发了巨正则势动力学(GCP-K)公式,为理解异质电化学反应提供了一个基本依据。我们的GCP-K公式自然地源于使用勒让德变换使自由能最小化,该变换将系统的净电荷与外加电压联系起来。明确地进行这种宏观变换使我们能够将GCP-K与传统的巴特勒-伏尔默动力学联系起来。利用基于GCP-K的自由能,我们展示了如何针对一个具体例子预测电势和pH依赖的化学过程,即在MoS基面硫空位处的析氢反应(HER)。我们发现,在酸性和碱性条件下,速率决定步骤都是沃默反应,即溶液中的第二个氢原子被吸附。使用GCP-K公式,我们表明拉伸键距随外加电势连续变化。这表明碱性条件下活性更高的主要原因是过渡态更接近产物,这导致了更有利的60 mV/dec的塔菲尔斜率。相反,如果过渡态更接近反应物,此时传递系数小于0.5,我们将得到几乎150 mV/dec的塔菲尔斜率。基于对反应机理的这种详细理解,我们得出结论,硫族化物空位处的第二个氢对析氢反应最具活性。将此作为一个描述符,我们将其与其他2H族VI族金属二硫属化物进行比较,并预测MoTe上的空位对HER具有最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验