Wu Feng, Liu Xiaokang, Wang Shiqi, Hu Longfei, Kunze Sebastian, Xue Zhenggang, Shen Zehao, Yang Yaxiong, Wang Xinqiang, Fan Minghui, Pan Hongge, Gao Xiaoping, Yao Tao, Wu Yuen
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China.
Deep Space Exploration Laboratory, Hefei, China.
Nat Commun. 2024 Aug 14;15(1):6972. doi: 10.1038/s41467-024-50927-4.
Cations such as K play a key part in the CO electroreduction reaction, but their role in the reaction mechanism is still in debate. Here, we use a highly symmetric Ni-N structure to selectively probe the mechanistic influence of K and identify its interaction with chemisorbed CO. Our electrochemical kinetics study finds a shift in the rate-determining step in the presence of K. Spectral evidence of chemisorbed CO from in-situ X-ray absorption spectroscopy and in-situ Raman spectroscopy pinpoints the origin of this rate-determining step shift. Grand canonical potential kinetics simulations - consistent with experimental results - further complement these findings. We thereby identify a long proposed non-covalent interaction between K and chemisorbed CO. This interaction stabilizes chemisorbed CO and thus switches the rate-determining step from concerted proton electron transfer to independent proton transfer. Consequently, this rate-determining step shift lowers the reaction barrier by eliminating the contribution of the electron transfer step. This K-determined reaction pathway enables a lower energy barrier for CO electroreduction reaction than the competing hydrogen evolution reaction, leading to an exclusive selectivity for CO electroreduction reaction.
诸如钾离子(K⁺)等阳离子在CO电还原反应中起着关键作用,但其在反应机理中的作用仍存在争议。在此,我们使用高度对称的Ni-N结构来选择性地探究K⁺的作用机制,并确定其与化学吸附的CO之间的相互作用。我们的电化学动力学研究发现,在有K⁺存在的情况下,速率决定步骤发生了变化。原位X射线吸收光谱和原位拉曼光谱对化学吸附CO的光谱证据确定了这一速率决定步骤变化的根源。与实验结果一致的巨正则势动力学模拟进一步补充了这些发现。由此,我们确定了长期以来所提出的K⁺与化学吸附CO之间的非共价相互作用。这种相互作用使化学吸附的CO得以稳定,从而将速率决定步骤从协同质子电子转移转变为独立质子转移。因此,这种速率决定步骤的变化通过消除电子转移步骤的贡献而降低了反应势垒。这种由K⁺决定的反应途径使得CO电还原反应的能垒低于竞争性析氢反应,从而导致对CO电还原反应具有独特的选择性。