Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
PLoS One. 2018 Nov 8;13(11):e0206620. doi: 10.1371/journal.pone.0206620. eCollection 2018.
The increasing interest in exploring the human genome and identifying genetic risk factors contributing to the susceptibility to and outcome of diseases has supported the rapid development of genome-wide techniques. However, the large amount of obtained data requires extensive bioinformatics analysis. In this work, we established an approach combining amplified fragment length polymorphism (AFLP), AFLP in silico and next generation sequencing (NGS) methods to map the malignant genome of patients with chronic myeloid leukemia. We compared the unique DNA fingerprints of patients generated by the AFLP technique approach with those of healthy donors to identify AFLP markers associated with the disease and/or the response to treatment with imatinib, a tyrosine kinase inhibitor. Among the statistically significant AFLP markers selected for NGS analysis and virtual fingerprinting, we identified the sequences of three fragments in the region of DNA repeat element OldhAT1, LINE L1M7, LTR MER90, and satellite ALR/Alpha among repetitive elements, which may indicate a role of these non-coding repetitive sequences in hematological malignancy. SNPs leading to the presence/absence of these fragments were confirmed by Sanger sequencing. When evaluating the results of AFLP analysis for some fragments, we faced the frequently discussed size homoplasy, resulting in co-migration of non-identical AFLP fragments that may originate from an insertion/deletion, SNP, somatic mutation anywhere in the genome, or combination thereof. The AFLP-AFLP in silico-NGS procedure represents a smart alternative to microarrays and relatively expensive and bioinformatically challenging whole-genome sequencing to detect the association of variable regions of the human genome with diseases.
人们对探索人类基因组和确定导致疾病易感性和结果的遗传风险因素越来越感兴趣,这支持了全基因组技术的快速发展。然而,获得的大量数据需要广泛的生物信息学分析。在这项工作中,我们建立了一种结合扩增片段长度多态性(AFLP)、AFLP 计算机模拟和下一代测序(NGS)方法的方法,用于绘制慢性髓性白血病患者恶性基因组图谱。我们将 AFLP 技术方法获得的患者独特 DNA 指纹与健康供体进行比较,以鉴定与疾病和/或对伊马替尼(一种酪氨酸激酶抑制剂)治疗反应相关的 AFLP 标记物。在对 NGS 分析和虚拟指纹进行统计分析选择的具有统计学意义的 AFLP 标记物中,我们在 DNA 重复元件 OldhAT1、LINE L1M7、LTR MER90 和重复元件中的卫星 ALR/Alpha 区域鉴定了三个片段的序列,这可能表明这些非编码重复序列在血液恶性肿瘤中发挥作用。通过 Sanger 测序证实了导致这些片段存在/缺失的 SNPs。在评估某些片段的 AFLP 分析结果时,我们面临着经常讨论的大小同形性问题,导致非同源 AFLP 片段的共迁移,这些片段可能源于基因组中任何地方的插入/缺失、SNP、体细胞突变,或它们的组合。AFLP-AFLP 计算机模拟-NGS 程序代表了一种替代微阵列的智能方法,并且相对于昂贵且具有生物信息学挑战性的全基因组测序来说,它可以检测人类基因组可变区域与疾病的关联。