Department of Earth & Environmental Sciences, KU Leuven, 3001, Heverlee, Belgium.
Department of Biology, KU Leuven, 3001, Heverlee, Belgium.
Environ Pollut. 2018 Dec;243(Pt B):1912-1922. doi: 10.1016/j.envpol.2018.09.053. Epub 2018 Sep 17.
Heavy metals in urban soils may impose a threat to public health and may negatively affect urban tree viability. Vegetation spectroscopy techniques applied to bio-indicators bring new opportunities to characterize heavy metal contamination, without being constrained by laborious soil sampling and lab-based sample processing. Here we used Tilia tomentosa trees, sampled across three European cities, as bio-indicators i) to investigate the impacts of elevated concentrations of cadmium (Cd) and lead (Pb) on leaf mass per area (LMA), total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and the maximal PSII photochemical efficiency (Fv/Fm); and ii) to evaluate the feasibility of detecting Cd and Pb contamination using leaf reflectance spectra. For the latter, we used a partial-least-squares discriminant analysis (PLS-DA) to train spectral-based models for the classification of Cd and/or Pb contamination. We show that elevated soil Pb concentrations induced a significant decrease in the LMA and Chla:Chlb, with no decrease in Chl. We did not observe pronounced reductions of Fv/Fm due to Cd and Pb contamination. Elevated Cd and Pb concentrations induced contrasting spectral changes in the red-edge (690-740 nm) region, which might be associated with the proportional changes in leaf pigments. PLS-DA models allowed for the classifications of Cd and Pb contamination, with a classification accuracy of 86% (Kappa = 0.48) and 83% (Kappa = 0.66), respectively. PLS-DA models also allowed for the detection of a collective elevation of soil Cd and Pb, with an accuracy of 66% (Kappa = 0.49). This study demonstrates the potential of using reflectance spectroscopy for biomonitoring of heavy metal contamination in urban soils.
城市土壤中的重金属可能对公众健康构成威胁,并可能对城市树木的生存能力产生负面影响。应用于生物指示剂的植被光谱技术为重金属污染的特征描述带来了新的机会,而不受繁琐的土壤采样和基于实验室的样品处理的限制。在这里,我们使用三叶悬铃木(Tilia tomentosa)树作为生物指示剂,在三个欧洲城市进行采样,以调查 i)镉(Cd)和铅(Pb)浓度升高对叶面积质量(LMA)、总叶绿素含量(Chl)、叶绿素 a 与 b 比值(Chla:Chlb)和最大 PSII 光化学效率(Fv/Fm)的影响;以及 ii)评估使用叶片反射光谱检测 Cd 和 Pb 污染的可行性。对于后者,我们使用偏最小二乘判别分析(PLS-DA)来训练基于光谱的模型,以对 Cd 和/或 Pb 污染进行分类。我们表明,土壤 Pb 浓度升高会导致 LMA 和 Chla:Chlb 显著降低,而 Chl 没有降低。我们没有观察到由于 Cd 和 Pb 污染导致 Fv/Fm 明显降低。升高的 Cd 和 Pb 浓度在红边(690-740nm)区域引起了对比明显的光谱变化,这可能与叶片色素的比例变化有关。PLS-DA 模型允许对 Cd 和 Pb 污染进行分类,分类准确率分别为 86%(Kappa=0.48)和 83%(Kappa=0.66)。PLS-DA 模型还允许检测土壤中 Cd 和 Pb 的集体升高,准确率为 66%(Kappa=0.49)。这项研究表明了使用反射光谱技术进行城市土壤重金属污染生物监测的潜力。