Suppr超能文献

利用水稻叶片高光谱数据估算农田土壤中氯化钙提取态重金属浓度的可行性研究

Feasibility of Using Rice Leaves Hyperspectral Data to Estimate CaCl-extractable Concentrations of Heavy Metals in Agricultural Soil.

机构信息

School of Life Sciences, Nanjing University, Nanjing, 210093, China.

Suzhou Institute of Technology, Jiangsu University of Science and Technology, Zhangjiagang, 215600, China.

出版信息

Sci Rep. 2019 Nov 6;9(1):16084. doi: 10.1038/s41598-019-52503-z.

Abstract

Heavy metals contamination is a serious problem of China. It is necessary to estimate bioavailability concentrations of heavy metals in agricultural soil for keeping the food security and human health. This study aimed to use hyperspectral data of rice (Oryza sativa) leaves as an indicator to retrieve the CaCl-extractable concentrations of heavy metals in agricultural soil. Twenty-one rice samples, soil samples and reflectance spectra of rice leaves were collected, respectively. The potential relations between hyperspectral data and CaCl-extractable heavy metals (E-HM) were explored. The partial least-squares regression (PLSR) method with leave-one-out cross-validation has been used to predict concentrations of CaCl-extractable cadmium (E-Cd) and concentrations of CaCl-extractable lead (E-Pb) in farmland soil. The results showed that the concentrations of E-Cd in soil had significant correlation with concentrations of Cd in rice leaves; the number of bands associated with E-Cd was more than that of E-Pb. Four indices (normalized difference vegetation index (NDVI), carotenoid reflectance index (CRI), photochemical reflectance index 2 (PRI2), normalized pigments chlorophyll ratio index (NPCI)) were significant (P < 0.05) and negatively related to the E-Cd concentrations. The PLSR model of E-Cd concentrations performed better than the PLSR model of E-Pb concentrations, which with R = 0.592 and RMSE = 0.046. We conclude that if the rice was sensitive to E-HM and/or the crop was stressed by the E-HM, the hyperspectral data of field rice leaves hold potentials in estimating concentration of E-HM in farmland soil. Therefore, this method provides a new insight to monitoring the E-HM content in agricultural soil.

摘要

重金属污染是中国面临的一个严重问题。为了保障食品安全和人类健康,有必要对农业土壤中重金属的生物可利用浓度进行评估。本研究旨在利用水稻叶片的高光谱数据作为指标,反演农业土壤中重金属的氯化钙提取浓度。共采集了 21 个水稻样本、土壤样本和叶片反射光谱。分别探讨了高光谱数据与重金属的氯化钙提取浓度(E-HM)之间的潜在关系。采用偏最小二乘回归(PLSR)方法,结合留一法交叉验证,预测农田土壤中氯化钙提取的镉(E-Cd)和铅(E-Pb)浓度。结果表明,土壤中 E-Cd 浓度与水稻叶片中 Cd 浓度呈显著相关,与 E-Pb 浓度相关的波段数多于 E-Pb 浓度。四个指数(归一化差异植被指数(NDVI)、类胡萝卜素反射指数(CRI)、光化学反射指数 2(PRI2)、归一化色素叶绿素比指数(NPCI))与 E-Cd 浓度显著相关(P<0.05),且呈负相关。E-Cd 浓度的 PLSR 模型优于 E-Pb 浓度的 PLSR 模型,其 R 值为 0.592,RMSE 为 0.046。研究表明,如果水稻对 E-HM 敏感,或者作物受到 E-HM 的胁迫,田间水稻叶片的高光谱数据在估计农田土壤中 E-HM 浓度方面具有潜力。因此,该方法为监测农业土壤中 E-HM 含量提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5602/6834560/9cf06c93395f/41598_2019_52503_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验