Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Chem Phys. 2018 Nov 7;149(17):174111. doi: 10.1063/1.5047803.
The combination of high throughput computation and machine learning has led to a new paradigm in materials design by allowing for the direct screening of vast portions of structural, chemical, and property spaces. The use of these powerful techniques leads to the generation of enormous amounts of data, which in turn calls for new techniques to efficiently explore and visualize the materials space to help identify underlying patterns. In this work, we develop a unified framework to hierarchically visualize the compositional and structural similarities between materials in an arbitrary material space with representations learned from different layers of graph convolutional neural networks. We demonstrate the potential for such a visualization approach by showing that patterns emerge automatically that reflect similarities at different scales in three representative classes of materials: perovskites, elemental boron, and general inorganic crystals, covering material spaces of different compositions, structures, and both. For perovskites, elemental similarities are learned that reflects multiple aspects of atom properties. For elemental boron, structural motifs emerge automatically showing characteristic boron local environments. For inorganic crystals, the similarity and stability of local coordination environments are shown combining different center and neighbor atoms. The method could help transition to a data-centered exploration of materials space in automated materials design.
高通量计算和机器学习的结合通过直接筛选结构、化学和性能空间的大部分内容,为材料设计带来了新的范例。这些强大技术的使用会产生大量的数据,这反过来又需要新的技术来有效地探索和可视化材料空间,以帮助识别潜在的模式。在这项工作中,我们开发了一个统一的框架,通过从图卷积神经网络的不同层学习表示,来分层可视化任意材料空间中材料之间的组成和结构相似性。我们通过展示在三个代表性材料类别中自动出现的反映不同尺度相似性的模式来证明这种可视化方法的潜力:钙钛矿、硼元素和一般无机晶体,涵盖了不同组成、结构和多种的材料空间。对于钙钛矿,学习到的元素相似性反映了原子性质的多个方面。对于硼元素,自动出现结构基元,显示出硼的特征局部环境。对于无机晶体,通过结合不同的中心和邻原子,显示出局部配位环境的相似性和稳定性。该方法可以帮助在自动化材料设计中向以数据为中心的材料空间探索过渡。