Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan45137-66731, Iran.
Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences, Zanjan45137-66731, Iran.
J Chem Theory Comput. 2023 Feb 28;19(4):1186-1196. doi: 10.1021/acs.jctc.2c00915. Epub 2023 Feb 3.
Recognition of different structural patterns in different potential energy surface regions, such as in isomerizing quasilinear tetra atomic molecules, is important for understanding the details of underlying physics and chemistry. In this respect, using three variants of artificial neural networks (ANNs), we investigated the six-dimensional (6-D) singlet potential energy surfaces (PES) of tetra atomic isomers of the biogenic [H, C, N, O] system. At first, we constructed a separate ANN potential for each of the studied isomers. In the next step, a comparative assessment of the separate ANN models led to the setting up of a unified 6-D singlet PES equally and accurately describing all studied isomers. The constructed unified model yields relative energies comparable to those obtained either from the gold standard CCSD(T) method or from separate ANNs for each of the studied isomers. The accuracy of the unified singlet PES is on the order of 10 Hartrees (0.1 kcal/mol). The developed PES in this work captures the main features of nonlinear and quasilinear tetra atomic isomers of this biogenic system.
识别不同势能面区域中的不同结构模式,例如在准线性四面体分子的异构化中,对于理解潜在物理和化学的细节非常重要。在这方面,我们使用三种变体的人工神经网络 (ANN) 研究了生物源 [H、C、N、O] 系统的四面体异构体的六维 (6-D) 单线态势能面 (PES)。首先,我们为每个研究的异构体构建了一个单独的 ANN 势能。在下一步中,对单独的 ANN 模型进行比较评估,导致建立了一个统一的 6-D 单线态 PES,能够同样准确地描述所有研究的异构体。所构建的统一模型产生的相对能量与从黄金标准 CCSD(T)方法或从每个研究异构体的单独 ANN 获得的相对能量相当。统一单线态 PES 的精度约为 10 哈特rees(0.1 kcal/mol)。这项工作中开发的 PES 捕获了该生物系统的非线性和准线性四面体异构体的主要特征。