Acimovic Ivana, Refaat Marwan M, Moreau Adrien, Salykin Anton, Reiken Steve, Sleiman Yvonne, Souidi Monia, Přibyl Jan, Kajava Andrey V, Richard Sylvain, Lu Jonathan T, Chevalier Philippe, Skládal Petr, Dvořak Petr, Rotrekl Vladimir, Marks Andrew R, Scheinman Melvin M, Lacampagne Alain, Meli Albano C
Department of Biology, Faculty of Medicine, Masaryk University, Brno 62500, Czech Republic.
Department of Internal Medicine, Cardiology Division/Cardiac Electrophysiology Section and Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine and Medical Center, Beirut 1107 2020, Lebanon.
J Clin Med. 2018 Nov 8;7(11):423. doi: 10.3390/jcm7110423.
Sarcoplasmic reticulum Ca leak and post-translational modifications under stress have been implicated in catecholaminergic polymorphic ventricular tachycardia (CPVT), a highly lethal inherited arrhythmogenic disorder. Human induced pluripotent stem cells (hiPSCs) offer a unique opportunity for disease modeling.
The aims were to obtain functional hiPSC-derived cardiomyocytes from a CPVT patient harboring a novel ryanodine receptor (RyR2) mutation and model the syndrome, drug responses and investigate the molecular mechanisms associated to the CPVT syndrome.
Patient-specific cardiomyocytes were generated from a young athletic female diagnosed with CPVT. The contractile, intracellular Ca handling and electrophysiological properties as well as the RyR2 macromolecular remodeling were studied.
Exercise stress electrocardiography revealed polymorphic ventricular tachycardia when treated with metoprolol and marked improvement with flecainide alone. We found abnormal stress-induced contractile and electrophysiological properties associated with sarcoplasmic reticulum Ca leak in CPVT hiPSC-derived cardiomyocytes. We found inadequate response to metoprolol and a potent response of flecainide. Stabilizing RyR2 with a Rycal compound prevents those abnormalities specifically in CPVT hiPSC-derived cardiomyocytes. The RyR2-D3638A mutation is located in the conformational change inducing-central core domain and leads to RyR2 macromolecular remodeling including depletion of PP2A and Calstabin2.
We identified a novel RyR2-D3638A mutation causing 3D conformational defects and aberrant biophysical properties associated to RyR2 macromolecular complex post-translational remodeling. The molecular remodeling is for the first time revealed using patient-specific hiPSC-derived cardiomyocytes which may explain the CPVT proband's resistance. Our study promotes hiPSC-derived cardiomyocytes as a suitable model for disease modeling, testing new therapeutic compounds, personalized medicine and deciphering underlying molecular mechanisms.
肌浆网钙泄漏和应激下的翻译后修饰与儿茶酚胺能多形性室性心动过速(CPVT)有关,CPVT是一种高度致命的遗传性心律失常疾病。人类诱导多能干细胞(hiPSC)为疾病建模提供了独特的机会。
旨在从一名携带新型兰尼碱受体(RyR2)突变的CPVT患者中获得功能性hiPSC衍生的心肌细胞,对该综合征、药物反应进行建模,并研究与CPVT综合征相关的分子机制。
从一名被诊断为CPVT的年轻运动女性中生成患者特异性心肌细胞。研究了其收缩性、细胞内钙处理和电生理特性以及RyR2大分子重塑。
运动应激心电图显示,服用美托洛尔时出现多形性室性心动过速,单独使用氟卡尼时明显改善。我们发现CPVT hiPSC衍生的心肌细胞中存在与肌浆网钙泄漏相关的异常应激诱导收缩和电生理特性。我们发现对美托洛尔反应不足,对氟卡尼反应强烈。用Rycal化合物稳定RyR2可特异性预防CPVT hiPSC衍生的心肌细胞中的这些异常。RyR2-D3638A突变位于诱导构象变化的中央核心结构域,导致RyR2大分子重塑,包括PP2A和钙调蛋白2的耗竭。
我们鉴定出一种新型的RyR2-D3638A突变,该突变导致3D构象缺陷以及与RyR2大分子复合物翻译后重塑相关的异常生物物理特性。首次使用患者特异性hiPSC衍生的心肌细胞揭示了分子重塑,这可能解释了CPVT先证者的耐药性。我们的研究促进了hiPSC衍生的心肌细胞作为疾病建模、测试新治疗化合物、个性化医学和破译潜在分子机制的合适模型。