Al-Mubaid Hisham
1 Computer Science Department, University of Houston-Clear Lake, Houston, TX 77062, USA.
J Bioinform Comput Biol. 2018 Oct;16(5):1840018. doi: 10.1142/S0219720018400188.
Multifunctional genes are important genes because of their essential roles in human cells. Studying and analyzing multifunctional genes can help understand disease mechanisms and drug discovery. We propose a computational method for scoring gene multifunctionality based on functional annotations of the target gene from the Gene Ontology. The method is based on identifying pairs of GO annotations that represent semantically different biological functions and any gene annotated with two annotations from one pair is considered multifunctional. The proposed method can be employed to identify multifunctional genes in the entire human genome using solely the GO annotations. We evaluated the proposed method in scoring multifunctionality of all human genes using four criteria: gene-disease associations; protein-protein interactions; gene studies with PubMed publications; and published known multifunctional gene sets. The evaluation results confirm the validity and reliability of the proposed method for identifying multifunctional human genes. The results across all four evaluation criteria were statistically significant in determining multifunctionality. For example, the method confirmed that multifunctional genes tend to be associated with diseases more than other genes, with significance [Formula: see text]. Moreover, consistent with all previous studies, proteins encoded by multifunctional genes, based on our method, are involved in protein-protein interactions significantly more ([Formula: see text]) than other proteins.
多功能基因因其在人类细胞中的重要作用而成为重要基因。研究和分析多功能基因有助于理解疾病机制和药物发现。我们基于基因本体论(Gene Ontology)中目标基因的功能注释,提出了一种计算基因多功能性得分的方法。该方法基于识别代表语义不同生物学功能的基因本体注释对,任何被一对注释中的两个注释注释的基因都被视为多功能基因。所提出的方法可仅使用基因本体注释来识别整个人类基因组中的多功能基因。我们使用四个标准评估了所提出的方法在对所有人类基因的多功能性进行评分方面的性能:基因与疾病的关联;蛋白质 - 蛋白质相互作用;与PubMed出版物相关的基因研究;以及已发表的已知多功能基因集。评估结果证实了所提出的识别多功能人类基因方法的有效性和可靠性。在确定多功能性方面,所有四个评估标准的结果在统计学上均具有显著性。例如,该方法证实多功能基因比其他基因更倾向于与疾病相关,显著性为[公式:见原文]。此外,与之前所有研究一致,基于我们的方法,多功能基因编码的蛋白质比其他蛋白质更显著地参与蛋白质 - 蛋白质相互作用([公式:见原文])。