Kostet B, Tlidi M, Tabbert F, Frohoff-Hülsmann T, Gurevich S V, Averlant E, Rojas R, Sonnino G, Panajotov K
Faculté des Sciences, Université libre de Bruxelles (U.L.B.), Campus Plaine, 1050 Bruxelles, Belgium.
Institute for Theoretical Physics, University of Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany.
Philos Trans A Math Phys Eng Sci. 2018 Nov 12;376(2135):20170385. doi: 10.1098/rsta.2017.0385.
The Brusselator reaction-diffusion model is a paradigm for the understanding of dissipative structures in systems out of equilibrium. In the first part of this paper, we investigate the formation of stationary localized structures in the Brusselator model. By using numerical continuation methods in two spatial dimensions, we establish a bifurcation diagram showing the emergence of localized spots. We characterize the transition from a single spot to an extended pattern in the form of squares. In the second part, we incorporate delayed feedback control and show that delayed feedback can induce a spontaneous motion of both localized and periodic dissipative structures. We characterize this motion by estimating the threshold and the velocity of the moving dissipative structures.This article is part of the theme issue 'Dissipative structures in matter out of equilibrium: from chemistry, photonics and biology (part 2)'.
布鲁塞尔振子反应扩散模型是理解非平衡系统中耗散结构的一个范例。在本文的第一部分,我们研究了布鲁塞尔振子模型中稳态局域结构的形成。通过在二维空间中使用数值延拓方法,我们建立了一个分岔图,展示了局域斑的出现。我们刻画了从单个斑到方形扩展模式的转变。在第二部分,我们引入了延迟反馈控制,并表明延迟反馈可以诱导局域和周期性耗散结构的自发运动。我们通过估计移动耗散结构的阈值和速度来刻画这种运动。本文是主题为“非平衡物质中的耗散结构:从化学、光子学和生物学(第二部分)”的一部分。