Suppr超能文献

用于代谢物鉴定的液相色谱保留顺序预测。

Liquid-chromatography retention order prediction for metabolite identification.

机构信息

Department of Computer Science, Helsinki Institute for Information Technology HIIT, Aalto University, Espoo, Finland.

Department for Computer Science, Chair for Bioinformatics, Friedrich-Schiller-University, Jena, Germany.

出版信息

Bioinformatics. 2018 Sep 1;34(17):i875-i883. doi: 10.1093/bioinformatics/bty590.

Abstract

MOTIVATION

Liquid Chromatography (LC) followed by tandem Mass Spectrometry (MS/MS) is one of the predominant methods for metabolite identification. In recent years, machine learning has started to transform the analysis of tandem mass spectra and the identification of small molecules. In contrast, LC data is rarely used to improve metabolite identification, despite numerous published methods for retention time prediction using machine learning.

RESULTS

We present a machine learning method for predicting the retention order of molecules; that is, the order in which molecules elute from the LC column. Our method has important advantages over previous approaches: We show that retention order is much better conserved between instruments than retention time. To this end, our method can be trained using retention time measurements from different LC systems and configurations without tedious pre-processing, significantly increasing the amount of available training data. Our experiments demonstrate that retention order prediction is an effective way to learn retention behaviour of molecules from heterogeneous retention time data. Finally, we demonstrate how retention order prediction and MS/MS-based scores can be combined for more accurate metabolite identifications when analyzing a complete LC-MS/MS run.

AVAILABILITY AND IMPLEMENTATION

Implementation of the method is available at https://version.aalto.fi/gitlab/bache1/retention_order_prediction.git.

摘要

动机

液相色谱(LC)-串联质谱(MS/MS)是代谢物鉴定的主要方法之一。近年来,机器学习开始改变串联质谱的分析和小分子的鉴定。相比之下,尽管有许多使用机器学习进行保留时间预测的方法,但 LC 数据很少用于改进代谢物鉴定。

结果

我们提出了一种用于预测分子保留顺序的机器学习方法,即分子从 LC 柱中洗脱的顺序。与之前的方法相比,我们的方法具有重要的优势:我们表明,保留顺序在仪器之间比保留时间更能得到很好的保留。为此,我们的方法可以使用来自不同 LC 系统和配置的保留时间测量值进行训练,而无需繁琐的预处理,从而大大增加了可用的训练数据量。我们的实验表明,保留顺序预测是从异构保留时间数据中学习分子保留行为的有效方法。最后,我们演示了如何在分析完整的 LC-MS/MS 运行时,结合保留顺序预测和基于 MS/MS 的分数,以更准确地鉴定代谢物。

可用性和实现

该方法的实现可在 https://version.aalto.fi/gitlab/bache1/retention_order_prediction.git 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验