Suppr超能文献

图灵不稳定性驱动的分支组织结构生物制造:基于反应扩散机制的动态模拟与分析

Turing Instability-Driven Biofabrication of Branching Tissue Structures: A Dynamic Simulation and Analysis Based on the Reaction⁻Diffusion Mechanism .

作者信息

Zhu Xiaolu, Yang Hao

机构信息

College of Mechanical & Electrical Engineering, Hohai University, Changzhou 213022, Jiangsu, China.

Changzhou Key Laboratory of Digital Manufacture Technology, Hohai University, Changzhou 213022, Jiangsu, China.

出版信息

Micromachines (Basel). 2018 Mar 2;9(3):109. doi: 10.3390/mi9030109.

Abstract

Four-dimensional (4D) biofabrication techniques aim to dynamically produce and control three-dimensional (3D) biological structures that would transform their shapes or functionalities with time, when a stimulus is imposed or cell post-printing self-assembly occurs. The evolution of 3D branching patterns via self-assembly of cells is critical for the 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear how the formation and evolution of these branching patterns are biologically encoded. Here, we study the biofabrication of lung branching structures utilizing a simulation model based on Turing instability that raises a dynamic reaction⁻diffusion (RD) process of the biomolecules and cells. The simulation model incorporates partial differential equations of four variables, describing the tempo-spatial distribution of the variables in 3D over time. The simulation results present the formation and evolution process of 3D branching patterns over time and also interpret both the behaviors of side-branching and tip-splitting as the stalk grows and the fabrication style under an external concentration gradient of morphogen, through 3D visualization. This provides a theoretical framework for rationally guiding the 4D biofabrication of lung airway grafts via cellular self-organization, which would potentially reduce the complexity of future experimental research and number of trials.

摘要

四维(4D)生物制造技术旨在动态地制造和控制三维(3D)生物结构,当施加刺激或细胞打印后自组装发生时,这些结构会随时间改变其形状或功能。通过细胞自组装实现三维分支模式的演变对于具有分支几何形状的人工器官或组织的4D生物制造至关重要。然而,这些分支模式的形成和演变如何在生物学上编码仍不清楚。在这里,我们利用基于图灵不稳定性的模拟模型研究肺分支结构的生物制造,该模型引发了生物分子和细胞的动态反应-扩散(RD)过程。该模拟模型包含四个变量的偏微分方程,描述了这些变量在三维空间中随时间的时空分布。模拟结果呈现了三维分支模式随时间的形成和演变过程,并通过三维可视化解释了随着茎的生长侧支和尖端分裂的行为以及在形态发生素的外部浓度梯度下的制造方式。这为通过细胞自组织合理指导肺气道移植物的4D生物制造提供了一个理论框架,这可能会降低未来实验研究的复杂性和试验次数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/036c/6187743/4e2c69bb259f/micromachines-09-00109-g001.jpg

相似文献

2
Mechanisms of side branching and tip splitting in a model of branching morphogenesis.
PLoS One. 2014 Jul 22;9(7):e102718. doi: 10.1371/journal.pone.0102718. eCollection 2014.
3
Turing mechanism underlying a branching model for lung morphogenesis.
PLoS One. 2017 Apr 4;12(4):e0174946. doi: 10.1371/journal.pone.0174946. eCollection 2017.
4
4D Biofabrication Using Shape-Morphing Hydrogels.
Adv Mater. 2017 Dec;29(46). doi: 10.1002/adma.201703443. Epub 2017 Oct 12.
5
Wavelength of a Turing-type mechanism regulates the morphogenesis of meshwork patterns.
Sci Rep. 2021 Mar 1;11(1):4813. doi: 10.1038/s41598-021-84313-7.
6
[Biofabrication: new approaches for tissue regeneration].
Handchir Mikrochir Plast Chir. 2018 Apr;50(2):93-100. doi: 10.1055/s-0043-124674. Epub 2018 Jan 29.
7
4D Bioprinting: Technological Advances in Biofabrication.
Macromol Biosci. 2019 May;19(5):e1800441. doi: 10.1002/mabi.201800441. Epub 2019 Mar 1.
8
4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
Biofabrication. 2016 Dec 2;9(1):012001. doi: 10.1088/1758-5090/9/1/012001.
9
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.

引用本文的文献

1
Mechanism of branching morphogenesis inspired by diatom silica formation.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2309518121. doi: 10.1073/pnas.2309518121. Epub 2024 Feb 29.
2
Information Processing in the Brain as Optimal Entropy Transport: A Theoretical Approach.
Entropy (Basel). 2020 Oct 29;22(11):1231. doi: 10.3390/e22111231.

本文引用的文献

1
Four-Dimensional Bioprinting As a New Era for Tissue Engineering and Regenerative Medicine.
Front Bioeng Biotechnol. 2017 Oct 17;5:61. doi: 10.3389/fbioe.2017.00061. eCollection 2017.
2
4D Biofabrication Using Shape-Morphing Hydrogels.
Adv Mater. 2017 Dec;29(46). doi: 10.1002/adma.201703443. Epub 2017 Oct 12.
4
Turing mechanism underlying a branching model for lung morphogenesis.
PLoS One. 2017 Apr 4;12(4):e0174946. doi: 10.1371/journal.pone.0174946. eCollection 2017.
5
Study on a 3D Hydrogel-Based Culture Model for Characterizing Growth of Fibroblasts under Viral Infection and Drug Treatment.
SLAS Discov. 2017 Jun;22(5):626-634. doi: 10.1177/2472555217701247. Epub 2017 Mar 24.
6
Bioprinting for vascular and vascularized tissue biofabrication.
Acta Biomater. 2017 Mar 15;51:1-20. doi: 10.1016/j.actbio.2017.01.035. Epub 2017 Jan 11.
7
4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
Biofabrication. 2016 Dec 2;9(1):012001. doi: 10.1088/1758-5090/9/1/012001.
8
Three dimensional tubular structure self-assembled by vascular mesenchymal cells at stiffness interfaces of hydrogels.
Biomed Pharmacother. 2016 Oct;83:1203-1211. doi: 10.1016/j.biopha.2016.08.018. Epub 2016 Aug 23.
9
Three-dimensional vertex model for simulating multicellular morphogenesis.
Biophys Physicobiol. 2015 Aug 18;12:13-20. doi: 10.2142/biophysico.12.0_13. eCollection 2015.
10
E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7557-62. doi: 10.1073/pnas.1603310113. Epub 2016 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验