Suppr超能文献

用于 Li-S 电池的蓝磷烯对多硫化锂的吸附和扩散。

Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li-S batteries.

机构信息

Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada.

出版信息

Nanoscale. 2018 Dec 7;10(45):21335-21352. doi: 10.1039/c8nr04868a. Epub 2018 Nov 14.

Abstract

Lithium-sulphur (Li-S) batteries suffer from capacity loss due to the dissolution of lithium polysulfides (LiPSs). Although finding cathodes that can trap LiPSs strongly is a possible solution to suppress the "shuttle" effect, fast diffusion of lithium and LiPSs is also pivotal to prevent agglomeration. We report that monolayer blue phosphorene (BP), a recently synthesized two-dimensional material, possesses these characteristics as a cathode in Li-S batteries. Density functional theory calculations showed that while the adsorption energies (E) of various LiPSs over pristine BP are reasonably strong (from -0.86 eV to -2.45 eV), defect engineering of the lattice by introducing a single vacancy (SV) increased the binding strength significantly, with E in the range of -1.41 eV to -4.34 eV. Ab-initio molecular dynamics simulations carried out at 300 K showed that the single vacancies trap the Li atoms in the LiPSs compared to pristine BP. Projected density of states revealed that the creation of an SV induces metallicity in the cathode. Furthermore, an increase in the adsorption strength did not cause significant structural deformation, implying that the soluble large LiPSs did not decompose, which is essential to suppress capacity fading. The energy barriers for LiPSs' migration over pristine BP are minimal to ensure ultrafast diffusion, with the lowest diffusion energy barriers being 0.23 eV, 0.13 eV and 0.18 eV for LiS, LiS and LiS, respectively. Furthermore, the energy barrier associated with the catalytic oxidation of LiS over pristine and defective BP was found to be greater than three times smaller compared to graphene, which suggests that charging processes could be faster by orders of magnitude. Therefore, BP with a suitable combination of defects would be an excellent cathode material in Li-S batteries.

摘要

锂硫(Li-S)电池由于多硫化锂(LiPSs)的溶解而导致容量损失。虽然找到可以强烈捕获 LiPSs 的阴极是抑制“穿梭”效应的一种可能解决方案,但快速扩散锂和 LiPSs 对于防止聚集也至关重要。我们报告称,最近合成的二维材料单层蓝磷烯(BP)作为 Li-S 电池的阴极具有这些特性。密度泛函理论计算表明,虽然各种 LiPSs 在原始 BP 上的吸附能(E)相当强(从-0.86 eV 到-2.45 eV),但通过引入单个空位(SV)对晶格进行缺陷工程会显著增加结合强度,E 的范围为-1.41 eV 到-4.34 eV。在 300 K 下进行的从头算分子动力学模拟表明,与原始 BP 相比,单个空位可以捕获 LiPSs 中的 Li 原子。投影态密度表明,SV 的产生会使阴极具有金属性。此外,吸附强度的增加不会导致明显的结构变形,这意味着可溶性大的 LiPSs 不会分解,这对于抑制容量衰减至关重要。LiPSs 在原始 BP 上的迁移能垒最小,以确保超快扩散,LiS、LiS 和 LiS 的最低扩散能垒分别为 0.23 eV、0.13 eV 和 0.18 eV。此外,与石墨烯相比,LiS 在原始和缺陷 BP 上的催化氧化的能垒发现要小三个数量级以上,这表明充电过程可以快几个数量级。因此,具有合适缺陷组合的 BP 将是 Li-S 电池中的一种极好的阴极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验