Suppr超能文献

用于锂硫电池的钙钛矿氧化物中氧空位的催化机制

Catalytic Mechanism of Oxygen Vacancies in Perovskite Oxides for Lithium-Sulfur Batteries.

作者信息

Hou Wenshuo, Feng Pingli, Guo Xin, Wang Zhenhua, Bai Zhe, Bai Yu, Wang Guoxiu, Sun Kening

机构信息

Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Centre for Clean Energy Technology, School of Mathematics and Physics, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.

出版信息

Adv Mater. 2022 Jul;34(26):e2202222. doi: 10.1002/adma.202202222. Epub 2022 May 22.

Abstract

Defective materials have been demonstrated to possess adsorptive and catalytic properties in lithium-sulfur (Li-S) batteries, which can effectively solve the problems of lithium polysulfides (LiPSs) shuttle and sluggish conversion kinetics during charging and discharging of Li-S batteries. However, there is still a lack of research on the quantitative relationship between the defect concentration and the adsorptive-catalytic performance of the electrode. In this work, perovskites Sr Ti Mn O (STMn ) (x = 0.1-0.3) with different oxygen-vacancy concentrations are quantitatively regulated as research models. Through a series of tests of the adsorptive property and electrochemical performance, a quantitative relationship between oxygen-vacancy concentration and adsorptive-catalytic properties is established. Furthermore, the catalytic mechanism of oxygen vacancies in Li-S batteries is investigated using density functional theory calculations and in situ experiments. The increased oxygen vacancies can effectively increase the binding energy between perovskite and LiPSs, reduce the energy barrier of LiPSs decomposition reaction, and promote LiPSs conversion reaction kinetics. Therefore, the perovskite STMn  with high oxygen-vacancy concentrations exhibits excellent LiPSs adsorptive and catalytic properties, realizing high-efficiency Li-S batteries. This work is helpful to realize the application of the quantitative regulation strategy of defect engineering in Li-S batteries.

摘要

已证明有缺陷的材料在锂硫(Li-S)电池中具有吸附和催化性能,这可以有效解决锂硫电池充放电过程中多硫化锂(LiPSs)穿梭和转化动力学迟缓的问题。然而,对于电极缺陷浓度与吸附催化性能之间的定量关系仍缺乏研究。在这项工作中,将具有不同氧空位浓度的钙钛矿SrTiMnO(STMn)(x = 0.1 - 0.3)作为研究模型进行定量调控。通过一系列吸附性能和电化学性能测试,建立了氧空位浓度与吸附催化性能之间的定量关系。此外,利用密度泛函理论计算和原位实验研究了Li-S电池中氧空位的催化机理。增加的氧空位可以有效提高钙钛矿与LiPSs之间的结合能,降低LiPSs分解反应的能垒,并促进LiPSs转化反应动力学。因此,具有高氧空位浓度的钙钛矿STMn表现出优异的LiPSs吸附和催化性能,实现了高效Li-S电池。这项工作有助于实现缺陷工程定量调控策略在Li-S电池中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验