Burden Conrad J, Griffiths Robert C
Mathematical Sciences Institute, Australian National University, Canberra, Australia.
Research School of Biology, Australian National University, Canberra, Australia.
J Math Biol. 2019 Mar;78(4):1211-1224. doi: 10.1007/s00285-018-1306-y. Epub 2018 Nov 13.
The stationary distribution of a sample taken from a Wright-Fisher diffusion with general small mutation rates is found using a coalescent approach. The approximation is equivalent to having at most one mutation in the coalescent tree to the first order in the rates. The sample probabilities characterize an approximation for the stationary distribution from the Wright-Fisher diffusion. The approach is different from Burden and Tang (Theor Popul Biol 112:22-32, 2016; Theor Popul Biol 113:23-33, 2017) who use a probability flux argument to obtain the same results from a forward diffusion generator equation. The solution has interest because the solution is not known when rates are not small. An analogous solution is found for the configuration of alleles in a general exchangeable binary coalescent tree. In particular an explicit solution is found for a pure birth process tree when individuals reproduce at rate [Formula: see text].
采用合并方法求出了从具有一般小突变率的赖特-费希尔扩散中抽取的样本的平稳分布。该近似相当于在合并树中,在速率的一阶近似下最多有一个突变。样本概率刻画了赖特-费希尔扩散平稳分布的一种近似。该方法不同于伯登和唐(《理论种群生物学》112:22 - 32,2016;《理论种群生物学》113:23 - 33,2017),他们使用概率通量论证从正向扩散生成器方程获得相同结果。该解具有重要意义,因为当速率不小的时候,解是未知的。对于一般可交换二元合并树中等位基因的配置,也找到了类似的解。特别地,当个体以[公式:见文本]的速率繁殖时,对于纯生过程树找到了一个显式解。