Suppr超能文献

不同的蛋白稳态回路在核和细胞质蛋白质量控制中合作。

Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.

机构信息

Department of Biology, Stanford University, Stanford, CA, USA.

Janssen Research and Development, Spring House, PA, USA.

出版信息

Nature. 2018 Nov;563(7731):407-411. doi: 10.1038/s41586-018-0678-x. Epub 2018 Oct 31.

Abstract

Protein misfolding is linked to a wide array of human disorders, including Alzheimer's disease, Parkinson's disease and type II diabetes. Protective cellular protein quality control (PQC) mechanisms have evolved to selectively recognize misfolded proteins and limit their toxic effects, thus contributing to the maintenance of the proteome (proteostasis). Here we examine how molecular chaperones and the ubiquitin-proteasome system cooperate to recognize and promote the clearance of soluble misfolded proteins. Using a panel of PQC substrates with distinct characteristics and localizations, we define distinct chaperone and ubiquitination circuitries that execute quality control in the cytoplasm and nucleus. In the cytoplasm, proteasomal degradation of misfolded proteins requires tagging with mixed lysine 48 (K48)- and lysine 11 (K11)-linked ubiquitin chains. A distinct combination of E3 ubiquitin ligases and specific chaperones is required to achieve each type of linkage-specific ubiquitination. In the nucleus, however, proteasomal degradation of misfolded proteins requires only K48-linked ubiquitin chains, and is thus independent of K11-specific ligases and chaperones. The distinct ubiquitin codes for nuclear and cytoplasmic PQC appear to be linked to the function of the ubiquilin protein Dsk2, which is specifically required to clear nuclear misfolded proteins. Our work defines the principles of cytoplasmic and nuclear PQC as distinct, involving combinatorial recognition by defined sets of cooperating chaperones and E3 ligases. A better understanding of how these organelle-specific PQC requirements implement proteome integrity has implications for our understanding of diseases linked to impaired protein clearance and proteostasis dysfunction.

摘要

蛋白质错误折叠与广泛的人类疾病有关,包括阿尔茨海默病、帕金森病和 2 型糖尿病。保护性细胞蛋白质质量控制 (PQC) 机制已经进化,可以选择性地识别错误折叠的蛋白质并限制其毒性作用,从而有助于维持蛋白质组(蛋白质稳态)。在这里,我们研究了分子伴侣和泛素-蛋白酶体系统如何合作识别和促进可溶性错误折叠蛋白质的清除。使用具有不同特征和定位的一组 PQC 底物,我们定义了不同的伴侣和泛素化电路,它们在细胞质和核中执行质量控制。在细胞质中,错误折叠蛋白质的蛋白酶体降解需要与混合赖氨酸 48(K48)和赖氨酸 11(K11)连接的泛素链标记。需要特定的 E3 泛素连接酶和特定的伴侣来实现每种类型的连接特异性泛素化。然而,在核中,错误折叠蛋白质的蛋白酶体降解仅需要 K48 连接的泛素链,因此与 K11 特异性连接酶和伴侣无关。核和细胞质 PQC 的不同泛素编码似乎与 ubiquilin 蛋白 Dsk2 的功能有关,Dsk2 专门用于清除核内错误折叠的蛋白质。我们的工作定义了细胞质和核 PQC 的原则,涉及由定义的一组协作伴侣和 E3 连接酶进行组合识别。更好地了解这些细胞器特异性 PQC 要求如何实现蛋白质组完整性,对于我们理解与蛋白质清除受损和蛋白质稳态功能障碍相关的疾病具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e96a/6707801/b7fc6e949459/nihms-1006259-f0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验