Suppr超能文献

一种紊乱的泛素连接酶如何维持核蛋白动态平衡。

How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis.

机构信息

Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.

出版信息

Nucleus. 2011 Jul-Aug;2(4):264-70. doi: 10.4161/nucl.2.4.16118. Epub 2011 Jul 1.

Abstract

Cells use protein quality control (PQC) systems to protect themselves from potentially harmful misfolded proteins. Many misfolded proteins are repaired by molecular chaperones, but irreparably damaged proteins must be destroyed. Eukaryotes predominantly destroy these abnormally folded proteins through the ubiquitin-proteasome pathway, which requires compartment-specific ubiquitin ligase complexes that mark substrates with ubiquitin for proteasome degradation. In the yeast nucleus, misfolded proteins are targeted for degradation by the ubiquitin ligase San1, which binds misfolded nuclear proteins directly and does not appear to require chaperones for substrate binding. San1 is also remarkably adaptable, as it is capable of ubiquitinating a structurally diverse assortment of abnormally folded substrates. We attribute this adaptability to San1's high degree of structural disorder, which provides flexibility and allows San1 to conform to differently shaped substrates. Here we review our recent work characterizing San1's distinctive mode of substrate recognition and the associated implications for PQC in the nucleus.

摘要

细胞利用蛋白质质量控制系统来保护自身免受潜在有害的错误折叠蛋白的侵害。许多错误折叠的蛋白质可以被分子伴侣修复,但不可修复的受损蛋白质必须被破坏。真核生物主要通过泛素蛋白酶体途径来破坏这些异常折叠的蛋白质,该途径需要特定隔室的泛素连接酶复合物,这些复合物通过泛素将底物标记为蛋白酶体降解。在酵母核中,错误折叠的蛋白质被泛素连接酶 San1 靶向降解,该酶直接与错误折叠的核蛋白结合,并且似乎不需要伴侣蛋白来结合底物。San1 还具有很强的适应性,因为它能够泛素化结构多样的异常折叠底物。我们将这种适应性归因于 San1 高度的结构无序性,这种无序性提供了灵活性,使 San1 能够适应不同形状的底物。在这里,我们回顾了我们最近的工作,这些工作描述了 San1 独特的底物识别模式以及其对核内 PQC 的相关影响。

相似文献

1
How a disordered ubiquitin ligase maintains order in nuclear protein homeostasis.
Nucleus. 2011 Jul-Aug;2(4):264-70. doi: 10.4161/nucl.2.4.16118. Epub 2011 Jul 1.
2
Exposed hydrophobicity is a key determinant of nuclear quality control degradation.
Mol Biol Cell. 2011 Jul 1;22(13):2384-95. doi: 10.1091/mbc.E11-03-0256. Epub 2011 May 5.
3
The extent of Ssa1/Ssa2 Hsp70 chaperone involvement in nuclear protein quality control degradation varies with the substrate.
Mol Biol Cell. 2020 Feb 1;31(3):221-233. doi: 10.1091/mbc.E18-02-0121. Epub 2019 Dec 11.
5
Means of self-preservation: how an intrinsically disordered ubiquitin-protein ligase averts self-destruction.
Mol Biol Cell. 2013 Apr;24(7):1041-52. doi: 10.1091/mbc.E12-11-0811. Epub 2013 Jan 30.
6
Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.
Nature. 2018 Nov;563(7731):407-411. doi: 10.1038/s41586-018-0678-x. Epub 2018 Oct 31.
9
The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control.
J Biol Chem. 2016 Sep 2;291(36):18778-90. doi: 10.1074/jbc.M116.737619. Epub 2016 Jul 12.

引用本文的文献

1
The kinesin Kar3 is required for endoplasmic reticulum-associated degradation.
Mol Biol Cell. 2025 Mar 1;36(3):br9. doi: 10.1091/mbc.E24-10-0437. Epub 2025 Jan 22.
3
Proline Homeostasis in : How Does the Stress-Responsive Transcription Factor Msn2 Play a Role?
Front Genet. 2020 Apr 28;11:438. doi: 10.3389/fgene.2020.00438. eCollection 2020.
4
DISOselect: Disorder predictor selection at the protein level.
Protein Sci. 2020 Jan;29(1):184-200. doi: 10.1002/pro.3756. Epub 2019 Nov 7.
5
Structure and function of the histone chaperone FACT - Resolving FACTual issues.
Biochim Biophys Acta Gene Regul Mech. 2018 Jul 25. doi: 10.1016/j.bbagrm.2018.07.008.
6
"Mallostery"-ligand-dependent protein misfolding enables physiological regulation by ERAD.
J Biol Chem. 2018 Sep 21;293(38):14937-14950. doi: 10.1074/jbc.RA118.001808. Epub 2018 Jul 17.
7
The San1 Ubiquitin Ligase Functions Preferentially with Ubiquitin-conjugating Enzyme Ubc1 during Protein Quality Control.
J Biol Chem. 2016 Sep 2;291(36):18778-90. doi: 10.1074/jbc.M116.737619. Epub 2016 Jul 12.
9
Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation.
Mol Cell Biol. 2016 May 16;36(11):1691-703. doi: 10.1128/MCB.01112-15. Print 2016 Jun 1.
10
Bioinformatics analysis identifies several intrinsically disordered human E3 ubiquitin-protein ligases.
PeerJ. 2016 Feb 25;4:e1725. doi: 10.7717/peerj.1725. eCollection 2016.

本文引用的文献

2
Molecular chaperones and substrate ubiquitination control the efficiency of endoplasmic reticulum-associated degradation.
Diabetes Obes Metab. 2010 Oct;12 Suppl 2(Suppl 2):32-8. doi: 10.1111/j.1463-1326.2010.01273.x.
3
Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms.
Mol Cell. 2010 Oct 22;40(2):238-52. doi: 10.1016/j.molcel.2010.10.001.
4
Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins.
Mol Biol Cell. 2010 Jul 1;21(13):2102-16. doi: 10.1091/mbc.e10-02-0098. Epub 2010 May 12.
5
Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1.
Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1106-11. doi: 10.1073/pnas.0910591107. Epub 2009 Dec 28.
6
ANCHOR: web server for predicting protein binding regions in disordered proteins.
Bioinformatics. 2009 Oct 15;25(20):2745-6. doi: 10.1093/bioinformatics/btp518. Epub 2009 Aug 28.
7
Substrate binding site flexibility of the small heat shock protein molecular chaperones.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15604-9. doi: 10.1073/pnas.0902177106. Epub 2009 Aug 26.
8
Intranuclear degradation of polyglutamine aggregates by the ubiquitin-proteasome system.
J Biol Chem. 2009 Apr 10;284(15):9796-803. doi: 10.1074/jbc.M809739200. Epub 2009 Feb 13.
9
The unfoldomics decade: an update on intrinsically disordered proteins.
BMC Genomics. 2008 Sep 16;9 Suppl 2(Suppl 2):S1. doi: 10.1186/1471-2164-9-S2-S1.
10
Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery.
J Biol Chem. 2008 Nov 21;283(47):32302-16. doi: 10.1074/jbc.M806424200. Epub 2008 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验