Suppr超能文献

使用行政数据与电子临床数据识别脓毒症和器官功能障碍的差异及其对医院预后比较的影响。

Variation in Identifying Sepsis and Organ Dysfunction Using Administrative Versus Electronic Clinical Data and Impact on Hospital Outcome Comparisons.

机构信息

Department of Population Medicine, Harvard Medical School/Harvard Pilgrim Health Care Institute, Boston, MA.

Department of Medicine, Brigham and Women's Hospital, Boston, MA.

出版信息

Crit Care Med. 2019 Apr;47(4):493-500. doi: 10.1097/CCM.0000000000003554.

Abstract

OBJECTIVES

Administrative claims data are commonly used for sepsis surveillance, research, and quality improvement. However, variations in diagnosis, documentation, and coding practices for sepsis and organ dysfunction may confound efforts to estimate sepsis rates, compare outcomes, and perform risk adjustment. We evaluated hospital variation in the sensitivity of claims data relative to clinical data from electronic health records and its impact on outcome comparisons.

DESIGN, SETTING, AND PATIENTS: Retrospective cohort study of 4.3 million adult encounters at 193 U.S. hospitals in 2013-2014.

INTERVENTIONS

None.

MEASUREMENTS AND MAIN RESULTS

Sepsis was defined using electronic health record-derived clinical indicators of presumed infection (blood culture draws and antibiotic administrations) and concurrent organ dysfunction (vasopressors, mechanical ventilation, doubling in creatinine, doubling in bilirubin to ≥ 2.0 mg/dL, decrease in platelets to < 100 cells/µL, or lactate ≥ 2.0 mmol/L). We compared claims for sepsis prevalence and mortality rates between both methods. All estimates were reliability adjusted to account for random variation using hierarchical logistic regression modeling. The sensitivity of hospitals' claims data was low and variable: median 30% (range, 5-54%) for sepsis, 66% (range, 26-84%) for acute kidney injury, 39% (range, 16-60%) for thrombocytopenia, 36% (range, 29-44%) for hepatic injury, and 66% (range, 29-84%) for shock. Correlation between claims and clinical data was moderate for sepsis prevalence (Pearson coefficient, 0.64) and mortality (0.61). Among hospitals in the lowest sepsis mortality quartile by claims, 46% shifted to higher mortality quartiles using clinical data. Using implicit sepsis criteria based on infection and organ dysfunction codes also yielded major differences versus clinical data.

CONCLUSIONS

Variation in the accuracy of claims data for identifying sepsis and organ dysfunction limits their use for comparing hospitals' sepsis rates and outcomes. Using objective clinical data may facilitate more meaningful hospital comparisons.

摘要

目的

行政索赔数据通常用于脓毒症监测、研究和质量改进。然而,脓毒症和器官功能障碍的诊断、记录和编码实践的差异可能会混淆估计脓毒症发生率、比较结果和进行风险调整的努力。我们评估了索赔数据相对于电子健康记录中的临床数据的敏感性在医院间的差异及其对结果比较的影响。

设计、设置和患者:2013-2014 年在美国 193 家医院的 430 万例成年患者的回顾性队列研究。

干预措施

无。

测量和主要结果

使用电子健康记录中推定感染的临床指标(血培养和抗生素治疗)和同时发生的器官功能障碍(血管加压药、机械通气、肌酐翻倍、胆红素翻倍至≥2.0mg/dL、血小板减少至<100 细胞/µL 或乳酸≥2.0mmol/L)来定义脓毒症。我们比较了两种方法的脓毒症患病率和死亡率的索赔数据。所有估计值都使用层次逻辑回归模型进行可靠性调整,以考虑随机变异。医院索赔数据的敏感性较低且变化较大:脓毒症的中位数为 30%(范围为 5%-54%),急性肾损伤为 66%(范围为 26%-84%),血小板减少症为 39%(范围为 16%-60%),肝损伤为 36%(范围为 29%-44%),休克为 66%(范围为 29%-84%)。索赔数据和临床数据之间的相关性适中,脓毒症患病率的 Pearson 系数为 0.64,死亡率为 0.61。在按索赔数据计算的脓毒症死亡率最低的四分之一的医院中,46%的医院使用临床数据转移到更高的死亡率四分之一。使用基于感染和器官功能障碍代码的隐性脓毒症标准与临床数据相比也存在显著差异。

结论

索赔数据在识别脓毒症和器官功能障碍方面的准确性差异限制了其用于比较医院脓毒症发生率和结果的用途。使用客观的临床数据可能有助于更有意义的医院比较。

相似文献

4
Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014.
JAMA. 2017 Oct 3;318(13):1241-1249. doi: 10.1001/jama.2017.13836.
5
Objective Sepsis Surveillance Using Electronic Clinical Data.
Infect Control Hosp Epidemiol. 2016 Feb;37(2):163-71. doi: 10.1017/ice.2015.264. Epub 2015 Nov 3.
7
Hospital Variation in Risk-Adjusted Pediatric Sepsis Mortality.
Pediatr Crit Care Med. 2018 May;19(5):390-396. doi: 10.1097/PCC.0000000000001502.
9
Use of Electronic Clinical Data to Track Incidence and Mortality for SARS-CoV-2-Associated Sepsis.
JAMA Netw Open. 2023 Sep 5;6(9):e2335728. doi: 10.1001/jamanetworkopen.2023.35728.

引用本文的文献

4
Physician documentation matters. Using natural language processing to predict mortality in sepsis.
Intell Based Med. 2021;5. doi: 10.1016/j.ibmed.2021.100028. Epub 2021 Mar 10.
6
Adjudication of Codes for Identifying Sepsis in Hospital Administrative Data by Expert Consensus.
Crit Care Med. 2024 Dec 1;52(12):1845-1855. doi: 10.1097/CCM.0000000000006432. Epub 2024 Oct 10.
7
Trends in Empiric Broad-Spectrum Antibiotic Use for Suspected Community-Onset Sepsis in US Hospitals.
JAMA Netw Open. 2024 Jun 3;7(6):e2418923. doi: 10.1001/jamanetworkopen.2024.18923.
9
Validation of an ICD-Based Algorithm to Identify Sepsis: A Retrospective Study.
Risk Manag Healthc Policy. 2023 Nov 2;16:2249-2257. doi: 10.2147/RMHP.S429157. eCollection 2023.

本文引用的文献

2
Mortality Measures to Profile Hospital Performance for Patients With Septic Shock.
Crit Care Med. 2018 Aug;46(8):1247-1254. doi: 10.1097/CCM.0000000000003184.
3
The New York Sepsis Severity Score: Development of a Risk-Adjusted Severity Model for Sepsis.
Crit Care Med. 2018 May;46(5):674-683. doi: 10.1097/CCM.0000000000002824.
4
Counting Sepsis, an Imprecise but Improving Science.
JAMA. 2017 Oct 3;318(13):1228-1229. doi: 10.1001/jama.2017.13697.
5
Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014.
JAMA. 2017 Oct 3;318(13):1241-1249. doi: 10.1001/jama.2017.13836.
6
Validation of Administrative Definitions of Invasive Mechanical Ventilation across 30 Intensive Care Units.
Am J Respir Crit Care Med. 2016 Dec 15;194(12):1548-1552. doi: 10.1164/rccm.201605-0953LE.
7
Does Sepsis Case Mix Heterogeneity Prevent Outcome Comparisons?
Crit Care Med. 2016 Dec;44(12):2288-2289. doi: 10.1097/CCM.0000000000001933.
9
Associations Between Ventilator Bundle Components and Outcomes.
JAMA Intern Med. 2016 Sep 1;176(9):1277-83. doi: 10.1001/jamainternmed.2016.2427.
10
We Need Better Tools for Sepsis Surveillance.
Crit Care Med. 2016 Jul;44(7):1441-2. doi: 10.1097/CCM.0000000000001766.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验