Opt Lett. 2018 Nov 15;43(22):5669-5672. doi: 10.1364/OL.43.005669.
Spatial frequency domain imaging (SFDI) is emerging as an important new method in biomedical imaging due to its ability to provide label-free, wide-field tissue optical property maps. Most prior SFDI studies have utilized two spatial frequencies (2-f) for optical property extractions. The use of more than two frequencies (multi-f) can vastly improve the accuracy and reduce uncertainties in optical property estimates for some tissue types, but it has been limited in practice due to the slow speed of available inversion algorithms. We present a deep learning solution that eliminates this bottleneck by solving the multi-f inverse problem 300× to 100,000× faster, with equivalent or improved accuracy compared to competing methods. The proposed deep learning inverse model will help to enable real-time and highly accurate tissue measurements with SFDI.
空间频域成像(SFDI)作为一种新兴的生物医学成像方法,由于其能够提供无标记、宽场组织光学特性图而受到关注。大多数先前的 SFDI 研究都利用了两个空间频率(2-f)进行光学特性提取。对于某些组织类型,使用多个频率(多频)可以极大地提高光学特性估计的准确性并降低不确定性,但由于可用的反演算法速度较慢,在实践中受到限制。我们提出了一种深度学习解决方案,通过将多频逆问题的求解速度提高 300 到 100,000 倍,来消除这一瓶颈,与竞争方法相比,具有等效或更高的准确性。所提出的深度学习逆模型将有助于实现 SFDI 的实时和高精度组织测量。