Suppr超能文献

使用极端梯度提升和遗传编程的机器学习漫射光学层析成像

Machine Learning Diffuse Optical Tomography Using Extreme Gradient Boosting and Genetic Programming.

作者信息

Hauptman Ami, Balasubramaniam Ganesh M, Arnon Shlomi

机构信息

Department of Computer Science, Sapir Academic College, Sderot 7915600, Israel.

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva 8441405, Israel.

出版信息

Bioengineering (Basel). 2023 Mar 21;10(3):382. doi: 10.3390/bioengineering10030382.

Abstract

Diffuse optical tomography (DOT) is a non-invasive method for detecting breast cancer; however, it struggles to produce high-quality images due to the complexity of scattered light and the limitations of traditional image reconstruction algorithms. These algorithms can be affected by boundary conditions and have a low imaging accuracy, a shallow imaging depth, a long computation time, and a high signal-to-noise ratio. However, machine learning can potentially improve the performance of DOT by being better equipped to solve inverse problems, perform regression, classify medical images, and reconstruct biomedical images. In this study, we utilized a machine learning model called "XGBoost" to detect tumors in inhomogeneous breasts and applied a post-processing technique based on genetic programming to improve accuracy. The proposed algorithm was tested using simulated DOT measurements from complex inhomogeneous breasts and evaluated using the cosine similarity metrics and root mean square error loss. The results showed that the use of XGBoost and genetic programming in DOT could lead to more accurate and non-invasive detection of tumors in inhomogeneous breasts compared to traditional methods, with the reconstructed breasts having an average cosine similarity of more than 0.97 ± 0.07 and average root mean square error of around 0.1270 ± 0.0031 compared to the ground truth.

摘要

扩散光学层析成像(DOT)是一种用于检测乳腺癌的非侵入性方法;然而,由于散射光的复杂性和传统图像重建算法的局限性,它难以生成高质量的图像。这些算法可能会受到边界条件的影响,并且成像精度低、成像深度浅、计算时间长且信噪比高。然而,机器学习通过更有能力解决逆问题、进行回归、对医学图像进行分类以及重建生物医学图像,有可能提高DOT的性能。在本研究中,我们利用一种名为“XGBoost”的机器学习模型来检测不均匀乳房中的肿瘤,并应用基于遗传编程的后处理技术来提高准确性。所提出的算法使用来自复杂不均匀乳房的模拟DOT测量值进行测试,并使用余弦相似性度量和均方根误差损失进行评估。结果表明,与传统方法相比,在DOT中使用XGBoost和遗传编程可以更准确、非侵入性地检测不均匀乳房中的肿瘤,重建乳房与真实情况相比,平均余弦相似性超过0.97±0.07,平均均方根误差约为0.1270±0.0031。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bae2/10045273/ba5533447852/bioengineering-10-00382-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验