Suppr超能文献

线粒体离子通道的药理学调节。

Pharmacological modulation of mitochondrial ion channels.

机构信息

Department of Biology, University of Padova, Padova, Italy.

CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy.

出版信息

Br J Pharmacol. 2019 Nov;176(22):4258-4283. doi: 10.1111/bph.14544. Epub 2019 Jan 2.

Abstract

The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.

摘要

过去三十年中,由于对外膜和内膜中一些通道的分子鉴定,线粒体离子通道领域得到了快速发展。由于少数几种线粒体特异性通道的遗传模型,获得了这些通道在生理和病理环境下的功能相关信息。然而,许多离子通道在细胞内有多个定位,这使得通过药理学手段明确确定其功能变得困难。本综述总结了我们目前对线粒体离子通道的深入了解,特别关注近年来受到广泛关注的通道,即电压依赖性阴离子通道、通透性转换孔(也称为线粒体巨型通道)、线粒体钙单向转运体和一些内膜定位的钾通道。此外,还讨论了克服针对线粒体通道而非其他膜中对应通道的靶向特异性的困难的可能策略,以及通过与相互作用蛋白竞争结合的小肽来调节通道功能的可能性。总之,这些有前途的工具以及为识别新的、特定的通道调节剂而进行的大规模化学筛选,有望使我们在不久的将来确定大多数线粒体离子通道的实际功能,并在涉及它们的重要病理中进行药理学干预,如神经变性、缺血损伤和癌症。相关文章:本文是关于线粒体药理学的专题部分的一部分:治疗转化的特色机制和方法。要查看该部分中的其他文章,请访问 http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.

相似文献

1
Pharmacological modulation of mitochondrial ion channels.
Br J Pharmacol. 2019 Nov;176(22):4258-4283. doi: 10.1111/bph.14544. Epub 2019 Jan 2.
2
Small-Molecule Modulators of Mitochondrial Channels as Chemotherapeutic Agents.
Cell Physiol Biochem. 2019;53(S1):11-43. doi: 10.33594/000000192.
3
Mitochondrial pharmacology: featured mechanisms and approaches for therapy translation.
Br J Pharmacol. 2019 Nov;176(22):4245-4246. doi: 10.1111/bph.14820.
4
The 'ins' and 'outs' of mitochondrial membrane channels.
Trends Biochem Sci. 1992 Aug;17(8):315-20. doi: 10.1016/0968-0004(92)90444-e.
5
Pathophysiological and protective roles of mitochondrial ion channels.
J Physiol. 2000 Nov 15;529 Pt 1(Pt 1):23-36. doi: 10.1111/j.1469-7793.2000.00023.x.
6
Mitochondrial ion channels in pancreatic β-cells: Novel pharmacological targets for the treatment of Type 2 diabetes.
Br J Pharmacol. 2021 May;178(10):2077-2095. doi: 10.1111/bph.15018. Epub 2020 Mar 21.
7
Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials.
Br J Pharmacol. 2019 Nov;176(22):4302-4318. doi: 10.1111/bph.14431. Epub 2018 Aug 2.
8
Mitochondrial Ion Channels.
Annu Rev Biophys. 2023 May 9;52:229-254. doi: 10.1146/annurev-biophys-092622-094853.
10
Novel channels of the inner mitochondrial membrane.
Biochim Biophys Acta. 2009 May;1787(5):351-63. doi: 10.1016/j.bbabio.2008.11.015. Epub 2008 Dec 9.

引用本文的文献

1
Understanding mitochondrial potassium channels: 33 years after discovery.
Acta Biochim Pol. 2024 May 28;71:13126. doi: 10.3389/abp.2024.13126. eCollection 2024.
5
BK Activator NS1619 Improves the Structure and Function of Skeletal Muscle Mitochondria in Duchenne Dystrophy.
Pharmaceutics. 2022 Oct 29;14(11):2336. doi: 10.3390/pharmaceutics14112336.
6
Current Challenges of Mitochondrial Potassium Channel Research.
Front Physiol. 2022 May 31;13:907015. doi: 10.3389/fphys.2022.907015. eCollection 2022.
7
Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment.
Int J Mol Sci. 2022 Jan 21;23(3):1210. doi: 10.3390/ijms23031210.
8
Alternative Targets for Modulators of Mitochondrial Potassium Channels.
Molecules. 2022 Jan 4;27(1):299. doi: 10.3390/molecules27010299.
9
BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey.
Front Physiol. 2021 Oct 26;12:761474. doi: 10.3389/fphys.2021.761474. eCollection 2021.

本文引用的文献

1
High-Conductance Channel Formation in Yeast Mitochondria is Mediated by F-ATP Synthase e and g Subunits.
Cell Physiol Biochem. 2018;50(5):1840-1855. doi: 10.1159/000494864. Epub 2018 Nov 13.
2
Physiological Roles and Therapeutic Potential of Ca Activated Potassium Channels in the Nervous System.
Front Mol Neurosci. 2018 Jul 30;11:258. doi: 10.3389/fnmol.2018.00258. eCollection 2018.
3
Mitochondrial permeability transition pore: a potential drug target for neurodegeneration.
Drug Discov Today. 2018 Dec;23(12):1983-1989. doi: 10.1016/j.drudis.2018.08.001. Epub 2018 Aug 3.
4
Ca-Activated K Channel K3.1 as a Therapeutic Target for Immune Disorders.
Biol Pharm Bull. 2018;41(8):1158-1163. doi: 10.1248/bpb.b18-00078.
5
TRPC3 as a Target of Novel Therapeutic Interventions.
Cells. 2018 Jul 22;7(7):83. doi: 10.3390/cells7070083.
6
Cryo-EM structures of fungal and metazoan mitochondrial calcium uniporters.
Nature. 2018 Jul;559(7715):580-584. doi: 10.1038/s41586-018-0331-8. Epub 2018 Jul 11.
7
X-ray and cryo-EM structures of the mitochondrial calcium uniporter.
Nature. 2018 Jul;559(7715):575-579. doi: 10.1038/s41586-018-0330-9. Epub 2018 Jul 11.
8
Cryo-EM structure of a fungal mitochondrial calcium uniporter.
Nature. 2018 Jul;559(7715):570-574. doi: 10.1038/s41586-018-0333-6. Epub 2018 Jul 11.
9
Cryo-EM structure of a mitochondrial calcium uniporter.
Science. 2018 Aug 3;361(6401):506-511. doi: 10.1126/science.aar4056. Epub 2018 Jun 28.
10
Cardiac metabolic effects of K1.2 channel deletion and evidence for its mitochondrial localization.
FASEB J. 2018 Jun 4;32(11):fj201800139R. doi: 10.1096/fj.201800139R.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验