Raghavan Shruthi, Kwon Jaerock
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:562-565. doi: 10.1109/EMBC.2018.8512288.
Tracing vasculature and neurites from teravoxel sized light-microscopy data-sets is a challenge impeding the availability of processed data to the research community. This is because (1) Holding terabytes of data during run-time is not easy for a regular PC. (2) Processing all the data at once would be slow and inefficient. In this paper, we propose a way to mitigate this challenge by Divide Conquer and Combine (DCC) method. We first split the volume into many smaller and manageable sub-volumes before tracing. These sub-volumes can then be traced individually in parallel (or otherwise). We propose an algorithm to stitch together the traced data from these sub-volumes. This algorithm is robust and handles challenging scenarios like (1) sub-optimal tracing at edges (2) densely packed structures and (3) different depths of trace termination. We validate our results using whole mouse brain vasculature data-set obtained from the Knife-Edge Scanning Microscopy (KESM) based automated tissue scanner.
从太体素大小的光学显微镜数据集中追踪脉管系统和神经突是一项挑战,阻碍了经过处理的数据向研究群体的提供。这是因为:(1)对于普通个人电脑来说,在运行时保存数TB的数据并不容易。(2)一次性处理所有数据会很慢且效率低下。在本文中,我们提出了一种通过分治与合并(DCC)方法来缓解这一挑战的方式。我们首先在追踪之前将体数据分割成许多更小且易于管理的子体数据。然后这些子体数据可以并行地(或以其他方式)单独进行追踪。我们提出了一种算法来将来自这些子体数据的追踪数据拼接在一起。该算法很稳健,能够处理具有挑战性的情况,如(1)边缘处的次优追踪、(2)密集排列的结构以及(3)不同深度的追踪终止。我们使用从基于刀刃扫描显微镜(KESM)的自动组织扫描仪获得的全小鼠脑血管系统数据集来验证我们的结果。