Suppr超能文献

发育中大鼠基于临床前MRI的脑部分割自动方法的比较研究

A Comparative Study of Automatic Approaches for Preclinical MRI-based Brain Segmentation in the Developing Rat.

作者信息

Sargolzaei Saman, Cai Yan, Wolahan Stephanie M, Gaonkar Bilwaj, Sargolzaei Arman, Giza Christopher C, Harris Neil G

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:652-655. doi: 10.1109/EMBC.2018.8512402.

Abstract

Accurate pre-clinical study reporting requires validated processing tools to increase data reproducibility within and between laboratories. Segmentation of rodent brain from non-brain tissue is an important first step in preclinical imaging pipelines for which well validated tools are still under development. The current study aims to clarify the best approach to automatic brain extraction for studies in the immature rat. Skull stripping modules from AFNI, PCNN-3D, and RATS software packages were assessed for their ability to accurately segment brain from non-brain by comparison to manual segmentation. Comparison was performed using Dice coefficient of similarity. Results showed that the RATS package outperformed the others by including a lower percentage of false positive, non-brain voxels in the brain mask. However, AFNI resulted in a lower percentage of false negative voxels. Although the automatic approaches for brain segmentation significantly facilitate the data stream process, the current study findings suggest that the task of rodent brain segmentation from T2 weighted MRI needs to be accompanied by a supervised quality control step when developmental brain imaging studies were targeted.

摘要

准确的临床前研究报告需要经过验证的处理工具,以提高实验室内部和之间的数据可重复性。从非脑组织中分割出啮齿动物的大脑是临床前成像流程中重要的第一步,目前仍在开发经过充分验证的工具。当前的研究旨在明确为幼鼠研究进行自动脑提取的最佳方法。通过与手动分割进行比较,评估了AFNI、PCNN-3D和RATS软件包中的颅骨剥离模块从非脑组织中准确分割出大脑的能力。使用相似性的Dice系数进行比较。结果表明,RATS软件包表现优于其他软件包,其脑掩码中假阳性非脑组织体素的百分比更低。然而,AFNI导致的假阴性体素百分比更低。尽管自动脑分割方法显著促进了数据流过程,但当前的研究结果表明,当针对发育性脑成像研究时,从T2加权MRI中分割啮齿动物大脑的任务需要伴随有监督的质量控制步骤。

相似文献

2
RATS: Rapid Automatic Tissue Segmentation in rodent brain MRI.RATS:啮齿动物脑 MRI 的快速自动组织分割。
J Neurosci Methods. 2014 Jan 15;221:175-82. doi: 10.1016/j.jneumeth.2013.09.021. Epub 2013 Oct 18.
3
Comparison of Automatic Segmentation Algorithms for the Subthalamic Nucleus.立体定向丘脑底核自动分割算法的比较。
Stereotact Funct Neurosurg. 2020;98(4):256-262. doi: 10.1159/000507028. Epub 2020 May 5.
6
Automatic macaque brain segmentation based on 7T MRI.基于 7T MRI 的自动猕猴大脑分割。
Magn Reson Imaging. 2022 Oct;92:232-242. doi: 10.1016/j.mri.2022.07.001. Epub 2022 Jul 13.
8
An automatic rat brain extraction method based on a deformable surface model.基于可变形表面模型的自动大鼠脑提取方法。
J Neurosci Methods. 2013 Aug 15;218(1):72-82. doi: 10.1016/j.jneumeth.2013.04.011. Epub 2013 May 14.
9
Machine learning identifies stroke features between species.机器学习识别物种间的中风特征。
Theranostics. 2021 Jan 1;11(6):3017-3034. doi: 10.7150/thno.51887. eCollection 2021.

本文引用的文献

9
The effects of pediatric epilepsy on a language connectome.小儿癫痫对语言连接组的影响。
Hum Brain Mapp. 2014 Dec;35(12):5996-6010. doi: 10.1002/hbm.22600. Epub 2014 Jul 31.
10
Multi-atlas skull-stripping.多图谱颅骨剥离。
Acad Radiol. 2013 Dec;20(12):1566-76. doi: 10.1016/j.acra.2013.09.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验