Suppr超能文献

在听口语句子时从脑电图中单次试验检测语义异常

Single-Trial Detection of Semantic Anomalies From EEG During Listening to Spoken Sentences.

作者信息

Tanaka Hiroki, Watanabe Hiroki, Maki Hayato, Sakti Sakriani, Nakamura Satoshi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:977-980. doi: 10.1109/EMBC.2018.8512370.

Abstract

We propose a method for the automatic detection of mismatched feelings that occur in communication. As our first step, we examined the semantically anomalous feelings from EEGs when participants listened to spoken sentences. Previous studies have shown that the event-related potentials (ERP) of an electroencephalogram (EEG) are evoked in the auditory and visual modalities where a semantic anomaly occurs. We expand this knowledge and detect it from a single-trial ERP using machine learning techniques. We recorded the brain activity of eight participants as they listened to sentences that contained semantic anomalies and found that a combination of feature selection using linear discriminant analysis and linear kernel support vector machines achieved the highest accuracy that exceeded 60%. By applying this technique, we plan to detect other types of anomalies in practical situations.

摘要

我们提出了一种用于自动检测交流中出现的情感不匹配的方法。作为第一步,我们在参与者听口语句子时,从脑电图(EEG)中检测语义异常情感。先前的研究表明,脑电图(EEG)的事件相关电位(ERP)在出现语义异常的听觉和视觉模态中被诱发。我们拓展了这一知识,并使用机器学习技术从单次试验ERP中检测它。我们记录了八名参与者在听包含语义异常的句子时的大脑活动,发现使用线性判别分析和线性核支持向量机进行特征选择的组合达到了超过60%的最高准确率。通过应用这项技术,我们计划在实际情况中检测其他类型的异常。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验