Tanaka Hiroki, Watanabe Hiroki, Maki Hayato, Sakti Sakriani, Nakamura Satoshi
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:977-980. doi: 10.1109/EMBC.2018.8512370.
We propose a method for the automatic detection of mismatched feelings that occur in communication. As our first step, we examined the semantically anomalous feelings from EEGs when participants listened to spoken sentences. Previous studies have shown that the event-related potentials (ERP) of an electroencephalogram (EEG) are evoked in the auditory and visual modalities where a semantic anomaly occurs. We expand this knowledge and detect it from a single-trial ERP using machine learning techniques. We recorded the brain activity of eight participants as they listened to sentences that contained semantic anomalies and found that a combination of feature selection using linear discriminant analysis and linear kernel support vector machines achieved the highest accuracy that exceeded 60%. By applying this technique, we plan to detect other types of anomalies in practical situations.
我们提出了一种用于自动检测交流中出现的情感不匹配的方法。作为第一步,我们在参与者听口语句子时,从脑电图(EEG)中检测语义异常情感。先前的研究表明,脑电图(EEG)的事件相关电位(ERP)在出现语义异常的听觉和视觉模态中被诱发。我们拓展了这一知识,并使用机器学习技术从单次试验ERP中检测它。我们记录了八名参与者在听包含语义异常的句子时的大脑活动,发现使用线性判别分析和线性核支持向量机进行特征选择的组合达到了超过60%的最高准确率。通过应用这项技术,我们计划在实际情况中检测其他类型的异常。